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We study a new Monte Carlo algorithm for generating self-avoiding walks with 
variable length (controlled by a fugacity fl) and fixed endpoints. The algorithm 
is a hybrid of local (BFACF) and nonlocal (cut-and-paste) moves. We find that 
the critical slowing-down, measured in units of computer time, is reduced 
compared to the pure BFACF algorithm: ~cpv ~ (N)'~z3 versus (N)~3.0. We 
also prove some rigorous bounds on the autocorrelation time for these and 
related Monte Carlo algorithms. 
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BFACF algorithm; cut-and-paste; critical exponent. 

1. I N T R O D U C T I O N  

The self-avoiding walk ( S A W )  is a wel l -known lat t ice mode l  of a po lymer  
molecule  with excluded volume. (I'2) Its equivalence to the n = 0 limit of  the 
n-vector  mode l  (3 8) has also m a d e  it an i m p o r t a n t  test case in the theory  of 
cri t ical  phenomena .  

In  this pape r  we s tudy a new M o n t e  Car lo  a lgor i thm for genera t ing  an 
ensemble  of SAWs  with variable length (contro l led  by a fugacity /?) and  
f i x e d  endpoints. This ensemble,  which has been used in refs. 7 and  9-13, is 
the a p p r o p r i a t e  one for de te rmin ing  the cri t ical  exponen t  esing, which 
governs  the cri t ical  s ingular i t ies  of the S A W  ana logue  of the specific heat  
(see Sect ion 2.1 for a precise definit ion).  In par t icular ,  we can test the 
hypersca l ing  re la t ion dv = 2 -  c~si~g, (14 20) a long  the lines p roposed  in ref. 1 I. 

O u r  a lgor i thm is an extension of an earl ier  a lgo r i thm due to Berg and 
Foers t e r  (m and  Aragfio de Carva lho ,  Caracc io lo ,  and  Fr6hl ich ,  ~7'9) here- 
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after called BFACF. The BFACF algorithm simulates an ensemble of 
variable-length SAWs with fixed endpoints, in which a SAW of N steps gets 
relative weight N/~ N. The elementary moves of the BFACF algorithm are 
loca l  d e f o r m a t i o n s  of the SAW, which amount  to inserting or removing an 
elementary plaquette somewhere along the walk (hence A N = O ,  _+2 on 
cubic lattices). This algorithm has, however, a rather peculiar dynamical 
behavior characterized by the metastability of large quasirectangular 
configurations.(22,1o) The resulting long autocorrelation time (severe critical 
slowing-down, 27int, N ~ ( N )  ~3) makes it difficult to obtain the high- 
precision estimates of critical exponents that are needed for a meaningful 
test of hyperscaling. 

Our generalization of the BFACF algorithm is inspired by recent work 
by Madras  and Sokal (23) on the pivot algorithm, (24'25~'3 which is a method 
for generating walks of fixed length and free endpoints by means of 
nonlocal ("pivot") moves. The moral  of ref. 23 is that certain types of 
radically nonlocal moves can lead to extraordinarily efficient Monte Carlo 
algorithms, if the acceptance fraction for these moves is not too small (e.g., 
only a small inverse power of N) and the benefit from successful moves is 
sufficiently great. Madras  and Sokal (ref. 23, Section 5.4) suggested the 
possibility of augmenting the BFACF algorithm by means of nonlocal 
"cut-and-paste" moves, the aim of which is to speed up equilibration within 
each subspace of fixed N (and in particular to destabilize the formerly 
metastable configurations). 4 This algorithm is thus a hybrid in which the 
nonlocal moves hopefully assure the rapid equilibration wi th in  subspaces of 
fixed N, while the local (BFACF) moves assure equilibration b e t w e e n  

different N (and in particular make the algorithm ergodic). The algorithm 
has a free parameter  p h i - t h e  percentage of nonlocal moves--which can be 
tuned as a function of ( N )  to optimize the computational  efficiency. 

In the best case one can expect that the hybrid algorithm will achieve 
an autocorrelation time ~ ~ ( N ) 2 :  for even if the nonlocal moves were to 
cause instant equilibration at fixed N, the local moves would still have to 
carry out a random walk in N. Such a behavior, if achieved, would be a 
significant improvement over the pure BFACF algorithm. This estimate 

3 We have recently discovered the following references, which should be added to those cited 
in ref. 23: The continuum version of the pivot algorithm was independently reinvented in 
1974 by Curro126); it was subsequently used by Scott (27) and probably by others. 

4 Similar cut-and-paste moves have been employed very recently by Dubins et aL, ~28) Madras 
et aL, 1~91 and Janse van Rensburg el aL, (3~ in the context of a fixed-N, fixed-endpoint 
algorithm. Also, vaguely related methods have been employed by Olaj et aL, ~31~ Mansfield, C32) 
Madden, c33) and Reiter et aL ~34~ for multichain polymer systems, and by Pollock and 
Ceperley 135) for quantum Monte Carlo. We thank Marvin Bishop and Bernard Piller for 
bringing these latter references to our attention. 
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refers, however, to physical time units; since the nonlocal moves require a 
computer time that grows as a fractional power of ( N ) ,  it is a subtle mat- 
ter to choose Phi so as to minimize the autocorrelation time as measured 
in computer (CPU) time units. 

In this paper we carry out a detailed numerical and theoretical study 
of the BFACF/cut-and-paste algorithm, with emphasis on its dynamic 
critical behavior and on the problem of optimization, s Along the way we 
obtain a number of interesting general theorems concerning the behavior of 
"hybrid" Monte Carlo algorithms. 

Our numerical experiments show that the physical autocorrelation 
time indeed scales as ~ ( N )  2 at fixed p~. Taking into account the 
CPU time, we find that the optimal Phi scales as - -~I / (N) ~~ and the 
autocorrelation time in CPU units then scales as ~cP~:~ { N )  ~23. For  
example, already at ( N ) ~  100 we find that the physical (resp. CPU) 
autocorrelation time of the hybrid algorithm with Pnt = 0.05 is a factor 6 
(resp. 4) smaller than that of the pure BFACF algorithm. The hybrid 
algorithm provides, therefore, a substantial improvement over previous 
algorithms for fixed-endpoint SAWs. 

The plan of this paper is as follows: In Section 2 we give a brief review 
of the self-avoiding walk (SAW) and dynamic Monte Carlo methods, and 
set the notation. In Section 3 we define the BFACF algorithm and discuss 
its dynamical behavior, define the cut-and-paste moves and discuss their 
expected effect, discuss the data structures needed for implementing the 
algorithm, and analyze the computational complexity. In Section 4 we 
present our numerical results. Section 5 contains some brief conclusions. In 
the Appendix we prove some general theorems about the dynamic behavior 
of reversible Markov chains; these theorems are likely to have other 
applications to Monte Carlo methods in statistical mechanics. 

2. B A C K G R O U N D  A N D  N O T A T I O N  

2.1. The Se l f -Avoid ing  W a l k  ( S A W )  

In this section we review briefly the basic facts and conjectures about 
the SAW that will be used in the remainder of the paper. Let 5O be some 
regular d-dimensional lattice. Then an N-step self-avoiding walk (SAW) co 
on 5O is a sequence of distinct points coo, col,..., ON in 5 ~ such that each 
point is a nearest neighbor of its predecessor. For  simplicity we shall 
restrict attention to the simple (hyper)cubic lattice Zd; similar ideas would 

5 A preliminary version of this work was reported at the Lattice '88 conference. (36~ 
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apply to other regular lattices. We assume all walks to begin at the origin 
(co o = 0) unless stated otherwise. 

Let 5~u be the set of N-step SAWs on Z d starting at the origin and 
ending anywhere, and let cu be the cardinality of SeN . Then it can be 
proven~37 39) that 

It~v << CN <~ KI Itu exp(K2 x/-N) (2.1) 

for suitable constants It, K1, and /s 6 Here It is called the connective 
constant of the lattice, and it is easy to prove that d~< It ~< 2 d - 1 .  It is 
strongly believed, though not yet proven, that cN has the asymptotic 
behavior 

CN ~ ItNNT- 1 (2.2) 

as N ~ o0. 7 Here 7 is a critical exponent, which is believed to be universal 
among lattices of a given dimension d. If (2.2) holds, then (2.1) implies that 
7~>1. 

Similarly, let 5~N(X) be the set of N-step SAWs on Z d starting at the 
origin and ending at x, and let CN(X) be the cardinality of SeN(X). Then it 
can be proven that (4~ 

K3(x)#Uexp(--K4x/N)<<,Cu(X)<<,KsitUexp(K6x/-N) (2.3) 

for x r  and N=(Z~=lx(~) )mod2 ,  with the same It as in (2.1), for 
suitable constants K3(x), K4, Ks, and K6 .8 It is strongly believed, though 
not yet proven, that CN(X) has the asymptotic behavior 

CN(X)~ItNNCqing 2 (x fixed va 0) (2.4) 

as N ~ o0, where c~s~ng is another (universal) critical exponent (independent 
of x). 

Consider now the mean-square end-to-end distance 

<co > :-L ixl cN(x) 
CN x 

(2.5) 

6A slightly stronger (for d >  2) upper bound on c~v has been proven by Kesten. (42) 
7 Very recently, Slade (46) has proven that (2.2) holds with ~ = 1 for SAWs in sufficiently high 

dimension d. 
8 For ]x[ = 1, Hammersley t4~ has proven that CN(X)<~ (N+ 1)//N, and Kesten 1421 has proven 

two lower bounds on cu(x) that are slightly better than (2.3). Some stronger bounds have 
recently been proven by Madras.  (44) 
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and the mean-square radii of gyration 

<$2> - = 1  Z $2(CO) (2.6) 
C N CO E S~N 

1 
( S 2 } x  ~ CN(X ) E $2(CO) (2.7) 

o) E YN(X) 

where 

$2(CO) -= N+----i- Coi N +  1 CoJ 
i = 0  j = O  

- N +  1 ~ Coi 
i = 0  i = 0  

(2.8) 

Very little has been proven rigorously about these quantities, but they are 
believed to have the asymptotic behavior 

(co2} ~N2~ (2.9) 

(SEN) ~ N  2~ (2.10) 

2 2v 
( S N ) x ~ N  (xfixed r  (2.11) 

as N ~  0% where v is another (universal) critical exponent. 9 
Finally, for walks CO e 5~N(X) with 4xl = 1 in two dimensions, we define 

d(CO) to be the signed area enclosed by the closed loop (COo, Co1,..., CON, COO), 
namely 

N + I  

~5~t(CO) ~- " f  y dx" ~ E o.)i(2)(COi(1) _o)i_1,(1) ] (2.12) 
i = 1  

where CON+ 1 ~ COO and the superscripts refer to the 1- and 2-components of 
vectors in Z 2. Clearly, ( ~ } x  = 0 by reflection symmetry. It is believed, but 
not proven, that ( [ d l ) x  has the asymptotic behavior 

( [ d l ) x ~ N  2v (2.13) 

as N ~ o e .  

9 Very recently, Slade 14547) has proven that (2.9) and (2.10) hold with v = I/2 for SAWs in 
sufficiently high dimension d. 
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The names of the critical exponents 7, esing, and v are chosen 
by analogy with the corresponding exponents in ferromagnetic spin 
systems. (15'48) Indeed, the generating functions of self-avoiding walks, 

)~(fl)- ~ flNc N (2.14) 
N=0 

~(x;/~) = ~ ~NCN(X) (2.15) 
N=0 

are equal to the susceptibility and spin-spin correlation function in the 
n-vector model analytically continued to n = 0. (5 8/ In particular, if x is a 
nearest neighbor of the origin, then G(x; fi) is essentially the energy E (up 
to an additive and multiplicative constant). Inserting (2.2) and (2.4) into 
(2.14)-(2.15), we obtain the leading behavior 

Z(fl) ~ (tic - fi)-'~ (2.16) 

G( x ; fl ) ~ (tic - fi ) l ~si~g + regular terms (2.17) 

as fl approaches the critical point t i c -  1//~. Note, in particular, that C%ng is 
the exponent for the singular part of the specific heat C H,.~ OE/Ofl; the 
exponent for the full specific heat is a = max(a~ng, 0). 

By analogy with the (conjectured) hyperscaling relation for the specific 
heat in spin models, (~4 2o/it is reasonable to conjecture that 

dv = 2 -  ~sing (2.18) 

for self-avoiding walks. One of the main objectives of the present paper is 
to devise a Monte Carlo algorithm for fixed-endpoint SAWs that is efficient 
enough to allow a high-precision test of this hyperscaling conjecture. For 
further discussion, see ref. 11. 

2.2. Dynamic  M o n t e  Carlo 

In this section we review briefly the principles of dynamic Monte 
Carlo methods, and define some quantities (autocorrelation times) that will 
play an important role in the remainder of the paper. 

Monte Carlo methods can be classified as static or dynamic. Static 
methods are those that generate a sequence of statistically independent 
samples from the desired probability distribution ~. Dynamic methods are 
those that generate a sequence of correlated samples from some stochastic 
process (usually a Markov process) having the desired probability distribu- 
tion ~ as its unique equilibrium distribution. 
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For simplicity let us assume that the state space S is discrete (i.e., finite 
or countably infinite); this is the case in the applications studied in this 
paper. Consider a Markov chain with state space S and transition 
probability matrix P =  {p(x--*y)} = {Pxy} satisfying the following two 
conditions: 

(A) For  each pair x, y ~ S, there exists an n >/0 for which -(~)> 0. /J  xy 

Here - (~  is the n-step transition probability from x to y. [This z" xy 
condition is called irreducibility (or ergodicity); it asserts that 
each state can eventually be reached from each other state.] 

(B) For each y e S ,  

rex pxy = ~ (2.19) 
x e S  

[This condition asserts that ~ is a stationary distribution for the 
Markov chain P = { P~v }. ] 

In this case it can be shown (49) that ~ is the unique stationary distribution 
for the Markov chain P = { p,y }, and that the occupation-time distribution 
over long time intervals converges (with probability 1) to ~, irrespective of 
the initial state of the system. If, in addition, P is aperiodic (this means that 
for each pair x, y e S, n(n~> 0 for all sufficiently large n), then the proba- r"  Xy 

bility distribution at any single time in the far future also converges to ~, 
irrespective of the initial s tate-- that  is, l i m ~  n (~) = ~zy for all x. 0(3 ~X.F 

Thus, simulation of the Markov chain P provides a legitimate Monte 
Carlo method for estimating averages with respect to ~. However, since the 
successive states J(o, X~ .... of the Markov chain are in general highly 
correlated, the variance of estimates produced in this way may be much 
higher than in independent sampling. To make this precise, let A = 
{ A ( x ) } ~ s  be a real-valued function defined on the state space S (i.e., a 
real-valued observable) that is square-integrable with respect to ~z. Now 
consider the stationary Markov chain (i.e., start the system in the 
stationary distribution re, or equivalently, "thermalize" it for a very long 
time prior to observing the system). Then {At} - {A(J(,)} is a stationary 
stochastic process with mean 

#A =- (A~) = ~ ~ A ( x )  (2.20) 
x ~ S  

and unnormalized autocorrelation function ~o 

C A A ( t  ) ~ (A~A~+t) --t~2A 

A (rtr) (2 .21)  = (x)[z~p~y - nx~r.~,] A(y) 
x, y E S  

~0 In  t h e  s t a t i s t i c s  l i t e r a t u r e ,  t h i s  is ca l l ed  t h e  autocovariance funct ion.  
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The normalized autocorrelation function is then 

p~,~ it) - c ~  (t)/CAA CO) (2.22) 

Typically, P AA(t) decays exponentially ( ~  e-N/~) for large t; we define the 
exponential autocorrelation time 

t 
r~p,A = lim sup _ log Up AA (t)l (2.23) 

and 

r~xp = sup %xp, A (2.24) 
A 

Thus, "tYex p is the relaxation time of the slowest mode in the system. (If the 
state space is infinite, rexp might be + oo?) 

An equivalent definition, which is useful for rigorous analysis, involves 
considering the spectrum of the transition probability matrix P considered 
as an operator on the Hilbert space 12(7r). 11 It is not hard to prove the 
following facts about P: 

(a) The operator P is a contraction. (In particular, its spectrum lies 
in the closed unit disk.) 

(b) 1 is a simple eigenvalue of P, as well as of its adjoint P*, with 
eigenvector equal to the constant function 1. 

(c) If the Markov chain is aperiodic, then 1 is the only eigenvalue of 
P (and of P*) on the unit circle. 

(d) Let R be the spectral radius of P acting on the orthogonal 
complement of the constant functions: 

R - i n f { r :  spec(P ) l ~ ) c  {2:121 ~r}} (2.25) 

Then R = e -  l/Zexp, 

Facts (a)-(c) are a generalized Perron-Frobenius theorem(~~ fact (d) is a 
consequence of a generalized spectral radius formula. (51) Note that the rate 
of convergence to equilibrium from an initial nonequilibrium distribution is 
controlled by R, and hence by ~exp. 

11 lZ(n) is the space of complex-valued functions on S that are square-integrable with 
respect to 7t: hlAII---[.~_.,:~sn~ IA(x)12]l/2<~O0. The inner product is given by (A, B)=- 

Z~s ~xA(x)* ~(x). 
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On the other hand, for a given observable A we define the integrated 
autocorrelation time 

z - -  
Z'int'A 2~= oo PAA(t) 

= ~ +  pAA(t) (2.26) 
t = l  

[The factor of 1/2 is purely a matter of convention; it is inserted so that 
v~m,A ~V~xp, A if p A A ( t ) ~ e  Itl/~ with r >> 1.] The integrated autocorrelation 
time controls the statistical error in Monte Carlo measurements of ( A ) .  
More precisely, the sample mean 

n 

~_=_1 ~ At (2.27) 
n t = l  

has variance 

1 ~ C A A ( r _ s )  (2.28) var(A) = 
r , s  = 1 

= -  ~, 1 - CAA(t) (2.29) 
n t =  ( n - l )  

1 
~ -  (2~i.t,A) CAA(0) for n>>~ (2.30) 

n 

Thus, the variance of A is a factor 2"tint, A larger than it would be if the {At} 
were statistically independent. Stated differently, the number of "effectively 
independent samples" in a run of length n is roughly n/2Zint, A. 

In summary, the autocorrelation times Vexp and ~int, A play different 
roles in Monte Carlo simulations. Zexp places an upper bound on the 
number of iterations naisc which should be discarded at the beginning of the 
run, before the system has attained equilibrium; for example, naiso ~ 20Z'exp 
is usually more than adequate. On the other hand, "tint, A determines the 
statistical errors in Monte Carlo measurements of ( A ) ,  once equilibrium 
has been attained. 

Most commonly it is assumed that %xp and rmt, A are of the same order 
of magnitude, at least for "reasonable" observables A. But this is not true 
in general. In fact, one usually expects the autocorrelation function PAA (t) 
to obey a dynamic scaling law ~52) of the form 

paA(t;  fl) ~ It[-a F((Ig - tic) ttl b) (2.31) 
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valid in the region 

Itl>>l, [/~-/~ch<l, 1//-/~,,I htl b bounded (2.32) 

Here a, b > 0 are dynamic critical exponents and F is a suitable scaling 
function; /3 is some "temperature-like" parameter, and /~c is the critical 
point. Now suppose that F in continuous and strictly positive, with F(x)  
decaying rapidly (e.g. exponentially) as [x] ~ oo. Then it is not hard to see 
that 

~'exp, A ~ l/~ - -  /~c[--l ib (2.33) 

"lrint, A ~ I/~-/~cl-(1- ~ (2.34) 

p aa(t; fl = f ic)~ Itl a (2.35) 

SO that Zexp, A and "tint, A have different critical exponents unless a=0.12 
Actually, this should not be surprising: replacing "time" by "space," we see 
that Zexp, A is the analogue of a correlation length, while Vint, A is the 
analogue of a susceptibility; and (2.33)-(2.35) are the analogue of the well- 
known scaling law 7 = ( 2 -  r/)v; clearly 7 r v in general! So it is crucial to 
distinguish between the two types of autocorrelation time. 

Returning to the general theory, we note that one convenient way of 
satisfying condition (B) is to satisfy the following stronger condition: 

(B') For each pair x, y E S, 

gx Pxy = 7Cy Pyx (2.36) 

[Summing (B') over x, we recover (B).] (B') is called the detailed-balance 
condition; a Markov chain satisfying (B') is called reversible. 13 (B') is 
equivalent to the self-adjointness of P as on operator on the space 12(zt). In 
this case, it follows from the spectral theorem that the autocorrelation 
function CAa(t) has a spectral representation 

1 
CAa(I)= f z~ Itl daAa()c) ( 2 . 3 7 )  

1 

with a nonnegative s~ectral weight d~TAA(J. ) supported on the interval 
[ - e  -t/~~ e-1/~~ It follows that 

_<1 /1 +e 1/~e~P'A~.<I [1 + e  1/rexp~ 
"Cint, A -~ .~ - - l - - -~ j . . ~ .~ - - l - - e_ l /~ ; ex~pJ ,~T .  ex p (2.38) 

12 Our  discussion of this topic ir ref. 10 is incorrect. 
~3 For  the physical significance cf  this term, see Kemeny  and  Snell (ref. 53, Section 5.3) or 

losifescu 0el.  54, Section 4.5). 
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3. THE ALGORITHM 

3.1. The Local (BFACF) Algorithm 

The BFACF algorithm 14 is a Markov chain with state space ~x(X) 
and invariant probability distribution 

~(co)=~(/~, x) I Icol/~ I~~ (3.1) 

where ]coJ denotes the number of bonds in the walk co, and 

z(p ,x)=  ~ N~Nc~(x) (3.2) 
N - - 0  

is the partition function for this ensemble. The elementary moves of the 
BFACF algorithm are the local deformations shown schematically in 
Fig. 1; they correspond to moving the middle bond by one lattice unit 
perpendicular to itself in one of the 2 d - 2  possible directions. The moves 
(A), (B), and (C) change the number of bonds in the walk by +2,  - 2 ,  and 
0, respectively. One iteration of the BFACF algorithm consists of the 
following operations: 

1. Choose at random a bond of the current walk co (with equal 
probability for each bond). 

2. Enumerate the 2 d - 2  possible deformations of that bond; choose 
randomly among these deformations, giving each deformation a 

14The description given in this section supersedes that of ref. 9, which suffers from an 
unfortunate confusion regarding the meaning of p(AN). 

(A)) i i 

(c) 
( - -  

Fig. 1. The local (BFACF) moves: (A) AN= +2; (B) AN= -2; (C) AN=O. 
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probability p(AN) depending only on A N -  Ico'l - Icol. (If the sum 
of these probabilities is s < 1, then make a "null transition" co ~ co 
with probability 1 - s . )  The probabilities p(AN) will be specified 
below. 

3. Check whether the proposed new walk co' is self-avoiding. If it is, 
keep it; otherwise, make a null transition. 

It follows that the transition matrix for the BFACF algorithm is given by 

1 
e(co ~ co') = ~ P(Ico I - Icot) ZSAW(co') (3.3) 

for co' r co, where 

f10 ifco' is self-avoiding 
ZSAW(CO') = - if co' is not self-avoiding 

(3.4) 

In order that this algorithm make sense, we must impose the 
inequalities 

P(co --. co') ~< 1 (3.5) 
o9' ~ C0 

for all co. To see what this implies, consider how step 2 of the algorithm is 
implemented. Once a bond has been chosen, we compare its direction with 
the directions of the preceding and following bonds along the walk. There 
are four possible cases (see Fig. 2): 

(i) The directions of all three bonds are the same. In this case all 
2 d - 2  possible deformations have AN= +2. 

(ii) One neighbor bond has the same direction as the chosen bond, 
while the other is perpendicular. In this case one possible 
deformation has A N = 0 ;  the other 2 d - 3  deformations have 
AN= +2. 

(iii) Both neighbor bonds are perpendicular to the chosen bond, and 
they are antiparallel to each other. In this case one possible 
deformation has A N =  - 2 ;  the other 2 d - 3  deformations have 
AN= +2. 

(iv) Both neighbor bonds are perpendicular to the chosen bond, and 
they are either parallel or perpendicular to each other. In this 
case two possible deformations have AN=O; the other 2 d - 4  
deformations have AN= +2. 

[-If the chosen bond is the first or last bond of the walk, then there is only 
one neighbor bond. If one pretends that the nonexistent ("phantom") 
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(i/ =~ 

13 

(ii) �9 �9 

(iii) I I 

Fig. 2. 

(iv) Y 

The four possible cases of link orientations in a local (BFACF) move. 

neighbor bond has the same direction as the chosen bond, then the above 
classification gives the correct answer.] We obtain, therefore, the following 
restrictions on p(AN): 

( 2 d - 2 )  p ( + 2 )  ~< 1 

p(O) + ( 2 d -  3) p( + 2) ~< 1 

p ( -  2) + ( 2 d -  3) p( + 2) ~< 1 

2p(O) + ( 2 d -  4) p ( + 2 )  ~< 1 

case (i) (3.6) 

case (ii) (3.7) 

case (iii) (3.8) 

case (iv) (3.9) 

However, inequality (ii) is a consequence of inequalities (i) and (iv) (just 
take the half-sum), so we can forget about (ii). Now, we must also satisfy 
the detailed-balance condition 

~n(co) P(CO --* co') = rc~(co') P(co' ~ co) (3.10) 
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for the probability measure rc~ defined in (3.1). This imposes the condition 

p( + 2)= flZp(-2) (3.11) 

Since 0 ~< fi ~< t i c -  #-1 ~< d-1 < 1, it follows that inequality (i) is strictly 
weaker than inequality (iii). Eliminating p ( -  2) in favor of p( + 2), the two 
remaining inequalities are 

[1 + ( 2 d -  3)fl 2] p ( + 2 )  ~<fl 2 case (iii) (3.12) 

2p(O)+(2d-4) p( +2)<~ l case(iv) (3.13) 

These inequalities determine a convex region in the (p(0), p ( + 2 ) )  plane 
(see Fig. 3). Any point in this region defines a valid version of the BFACF 
algorithm; the choice between these versions should be made on the 
grounds of efficiency. 

It makes sense physically that increasing the transition rates in a 
Monte Carlo algorithm (while keeping the same invariant measure re) can 
only improve the equilibration. Indeed, it is not hard to prove rigorously 
(see Theorems A.1-A.3 in the Appendix) that for reversible Markov chains, 
all autocorrelation times (~exp and Z'int, A) a re  reduced (or at least stay 
constant) whenever the off-diagonal elements of the transition matrix P are 
increased (keeping the same g). It follows that p(0) and p ( + 2 )  should be 
made as large as possible. In the case d = 2 ,  this criterion determines a 
unique optimal point, namely the intersection of lines (iii) and (iv) (see 
Fig. 3a). In the case d >  2, all we can say is that the optimal point(s) must 
lie somewhere on line (iv) below the intersection with line (iii) (see Fig. 3b). 
However, it is clearly bad to take p ( + 2 )  too small, since this will slow 
down the transitions between walks of different length [-indeed, for 
p ( +  2 ) =  0 the algorithm becomes nonergodic]. It seems reasonable, there- 
fore, to employ in all cases the algorithm defined by the intersection of lines 
(iii) and (iv), namely 

1 
p ( - 2 )  = 1 + ( 2 d - 3 ) f l  2 (3.14) 

l + f l  2 

p(0) - 211 + ( 2 d -  3)f123 (3.15) 

f12 
p ( + 2 ) -  1 + ( 2 d ,  3)fl 2 (3.16) 

Indeed, it can be shown (see Theorem A.3 and the example following it) 
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Fig. 3. The allowable region for p(0) and p ( + 2 )  in the BFACF algorithm. (a) Dimension 
d =  2. (b) Dimension d >  2. Region is drawn for ,8 =/~c for d =  2, 3, respectively. "Our choice" 
denotes (3.14) (3.16); "Metropolis" denotes (3.18). 
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that this choice is no more than a factor [1 + (2d-3) /32] / (1  ~_/~2) worse  
than the optimal choice; and 

t 
' ~  1.087 d = 3 l+(2d-3)f12<~l+(2d-3)fl~= ,~ 1.085 d = 4  

1 +/32 1 +/3~ ~ ~< 1 + ( 2 d -  4)/(d 2 + 1) ~< 1.2 any d 

(3.17) 

where we have used /3c~0.2135 (d=3) ,  (55J /3c~0.1477 (d=4) ,  (56) and 
~c<~ 1/d (all d). We have therefore adopted (3.14)-(3.16) in refs. 10 and 11 
and in the present paper. 

Remarks. 1. A perhaps simpler version of the BFACF algorithm is to 
choose at random a link k and a deformation direction ca;  the proposed 
deformation is then accepted or rejected according to the Metropolis 
criterion, i.e., with acceptance probability 

a(co--, ~ ' ) = m i n  L 

if A N = 0 o r  - 2  (3.18) 
=;(sAw(CO')x if2 if A N =  +2 

This amounts to choosing p(0) = p ( - 2 )  = 1 / ( 2 d -  2), p( + 2) = ~2/ (2d-  2), 
which is always inferior to the choice (3.14)-(3.16). 

2. Our decision in the case d > 2  to maximize p ( + 2 )  rather than 
p(0) is also sensible in the context of our "hybrid" algorithm: the nonlocal 
moves hopefully assure the equilibration of walks at fixed N, so the A N  = 0 
local moves are somewhat redundant; while the A N =  +2 moves are 
crucial in assuring equilibration between walks of different lengths. 

It is also necessary, of course, to verify that the BFACF algorithm is 
ergodic, i.e., that it is possible to get from any element of SeN(x) to any 
other by some finite sequence of allowed local deformations. The situation 
is at present rather complicated: 

(a) In dimension d = 2 ,  Madras (57) has proven that the BFACF 
algorithm is ergodic, for all choices of x. 

(b) In dimension d = 3 ,  the algorithm is nonergodic due to the 
possibility of knots (a conserved topological quantity) if 

IIxll oo - m a x ( I x l l ,  Ix21, Ix31)= 1 (3.19) 

If Ilxll ~o >~ 2, we do not know whether the algorithm is ergodic: in 
order to prove it, one would have to show that any "knot," no 
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matter  how large and complicated,  can be "disentangled" by a 
mot ion  which never passes more  than one strand at a time 
between the endpoints.  

(c) In dimension d~>4, it is not  known  whether the B F A C F  algo- 
ri thm is ergodic: we suspect that  it is, but  to prove it will require 
a capacity for mult idimensional  visualization that  exceeds our  
own. 

The dynamical  behavior  of the B F A C F  algori thm is rather peculiar 
(and not  completely unders tood  at present). A plausible heuristic argu- 
ment  (1~ suggests that  r ~  ( N )  2+2v, but this seems to be false! ~5 Indeed, 
Sokal and Thomas  (22~ have proven the surprising result that  rex p = +oo for 
all fl > 0. The proof  is both  simple and physically illuminating, so we 
reproduce it here. 

The result is actually a corollary of a more  general theorem about  
M a r k o v  chains. Consider  a M a r k o v  chain with transit ion matrix P 
satisfying detailed balance for some probabil i ty measure ~. If  d and B are 
subsets of  the state space S, let TAB be the min imum time for getting from 
A to B with nonzero  probabili ty,  i.e., 

TAB =~ min{n:  ,(n) > 0 for some x ~ A, y ~ B} (3.20) r xy 

Then the theorem asserts that  if TA~ is large and this is not  "justified" by 
the rarity of A and/or  B in the equilibrium distribution 7z, then the 
autocorre la t ion time rexp must  be large. More  precisely: 

T h e o r e m  1. Consider  a M a r k o v  chain with transition matrix P 
satisfying detailed balance for the probabil i ty measure n. Let TAB be 
defined as in (3.20). Then 

2(TA~-- 1) 
r e x p ~  sup (3.21) 

A , ~ s  - l o g [ ~ ( A )  ~(B)]  

ProoL Let A, B ~ S, and let n < TAB. Then, by definition of TAB, 

(ZA, PnJ~B),2(~I-= Z ~xP~x% ~ =0  (3.22) 
x ~ A  
y f f B  

15 We are less convinced now than we were 3 years ago about the plausibility of this heuristic 
argument. For the fixed-N local-deformation algorithms, the lower bound z >N 2+2v is 
clearly valid (see Example 3 following Theorem A.7), and it is reasonable to conjecture that 
it is close to sharp. However, for the BFACF algorithm the argument is far less plausible, 
since the AN= +2 moves could in principle cause the center-of-mass vector to relax in a 
time as small as (N)2--much smaller than (N)2+2L 

822/60/l -2-2 
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On the other hand, P I  = P*I = 1. It follows that 

(•A -- n(A) 1, P ' [ Z B  - rt(B)13)#(~)= -re(A) ~(B) (3.23) 

Now, since P is a self-adjoint  operator, we have 

liP" ~1• = lip P I •  n (3.24) 

where R = e  -l/,~ is the spectral radius (=norm)  of P p 1 • Hence, by the 
Schwarz inequality, 

I(ZA -- re(A) 1, f ' [ z g  -- re(B) 1])z2(.)l 

~< R" [I ZA -- 7z(A) 1 I1,=(~) II z~  - ~ (B)  1 I1,=(~) 

= R ' rc (A) l /2[1  - 7r(A )31/2 7t(B)l/2[ 1 _ re(B)] 1/2 

RnTT,(A) 1/2 ;re(B) 1/2 (3.25) 

Combining (3.23) with (3.25) and taking n = T ~ -  1, we arrive after a little 
algebra at (3.21). I 

To apply this theorem to the BFACF algorithm, let co* be a fixed 
short walk from 0 to x, and let ~o" be a quasirectangular walk from 0 to 
x of linear size ~ n  (Fig. 4). Then rt(o)*)~ 1 and rc((~')~fl ~4", so that 
- l o g E u ( c o * ) u ( o J " ) ] ~ n .  On the other hand--and this is the key 
point--the minimum time required to get from oJ" to (o* (or vice versa) in 
the BFACF algorithm is of order n 2, since the surface area spanned by 

l I 
Fig. 4. A large quasirectangular walk of linear size ~n .  
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conw co* can change by at most one unit in a local deformation. Applying 
the theorem with A = {o"} and B =  {m*}, we obtain 

, ~ n  2 
Z~xp ~> sup -= +oe (3.26) 

n "~f /  

The BFACF algorithm is characterized, therefore, by arbitrarily 
slowly-relaxing modes associated with transitions co-*of that have 
d(co, co'),>max(Icol, leo'l), where s~((~, (~') is the minimum surface area 
spanned by the union of co and co'. Consequently, one expects that for 
"most" observables A, the autocorrelation function PAA(t) will decay non- 
exponentially as t--, 0% so that Z~xp, A----Oe. However, there is nothing to 
prevent rint, A from being finite, and indeed one expects that ~Jnt, A < oc for 
"reasonable" observables A, i.e., those that are not too strongly coupled to 
very long walks. It then makes sense to study the dynamic critical exponent 
PA defined by 

"(int, A ~ (N)  pA ( 3 . 2 7 )  

for/~T tic. A preliminary study (1~ found PA = 3.0 + 0.4 for A = N, N 2, N 3 

in the two-dimensional SAW, and PA = 2.2_ 0.5 for the same observables 
in the two-dimensional nonreversal random walk (NRRW). We present 
additional data on the SAW in Section 4. Also, in the Appendix we prove 
the rigorous lower bound Z'int, d ~ const x ( d  2) and a similar bound for 
~Cint, l d [  (see Example 1 following Theorem A:7). Assuming the usual scaling 
behavior with exponent given by (2.13), this implies 

f 3 

g2.4 
P~'PIo~I>~4v=~2 2 

for the d = 2 SAW 

for the d = 3 SAW 

for the d~> 4 SAW 

for the NRRW (any d) 

(3.28) 

In the absence of any additional physical mechanisms for "slow modes," it 
is reasonable to expect that this bound is close to sharp, and this is 
confirmed by our numerical estimates for the d =  2 SAW and NRRW. 

3.2. The Nonlocal Algorithm 

As we have just seen, the BFACF algorithm has very slowly-relaxing 
modes associated with transitions to very long walks whose "surface area" 
is much greater than their length. In this subsection we describe how to 
supplement the BFACF algorithm with nonlocal moves that are specifically 
designed to speed up these slow modes. These nonlocal moves are 
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N-conserving; ideally, they would cause instant equilibration among the 
walks at fixed N, leaving to the local moves the task of bringing about 
equilibration between the spaces of different N. Therefore, in evaluating 
the performance of the hybrid (local + nonlocal) algorithm, two distinct 
questions arise: 

(a) How well does the idealized hybrid algorithm perform? That is: 
/f  the nonlocal moves were to bring about instant equilibration 
among the walks at fixed N, what would be the dynamic critical 
behavior of the hybrid algorithm? 

(b) How well does a particular set of nonlocal moves approximate 
the ideal of instant equilibrium? To what extent does the non- 
ideality of the nonlocal moves degrade the performance of the 
combined algorithm? 

Our numerical experiments (Section 4) are designed to disentangle the 
answers to these two questions. 

The particular nonlocal moves that we shall consider here are "cut- 
and-paste" moves which cut the walk into two or more pieces, permute 
and/or invert the pieces, and then reassemble them. In order to describe 
these moves, it is convenient to think of a walk co = (coo, col, co2 ..... cop) as 
a sequence of steps ai(co)=--coi--cOi_l (I~<i~<N). We then define the 
following operations: 

1. Subwalk. If co = (coo, col, (~2,..., coN), then let coi'J be the part of co 
from point i through point j (0 <~i<<.j<~ N), i.e., 

coi, j..._:._ (coi, c o i + I  ..... co j - -1 ,  coJ) (3.29) 

2. Concatenation. If co = (coo, col,..., coN) and co' = (co~, C0],...,CON,), 
then let co o co' be the walk obtained by concatenating co and co', 

. 

i.e.~ 

~COi - -  COO 
(co~ co')~ = t ( c o N -  coo) + (col- ~ -  co;) 

Clearly, the steps of co o co' are given by 

l'ai(co) 
ai( co~ co') = ~ ai_ u(co, ) 

Inversion. 
by 

if O <~ i <~ N 
(3.30) 

if N <<. i <~ N + N '  

if l <~ i <<. N 

if N + I < < . i < < . N + N '  
(3.31) 

If co= (coo, col, co2,..., coN), let 1co be the walk defined 

(Ico)i = coN-- CON i (3.32) 
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Equivalently, Ico is obtained by inverting the order of steps in co, i.e., 

ai (/co) = aN_ i+ 1(co) (3.33) 

In particular, /co has the same end-to-end distance vector as co: 
('ON - -  coO ~" ( Ico ) N - -  ( Ico )O" 

4. Permuta t ion .  Let co = (coo, col, co2,..., CON) and 0~<i~<N. Then 
Pico is the walk obtained by cutting co at site i and permuting the 
two pieces: 

P ico = co i 'Noco  O'i (3.34) 

The steps of P / o  are clearly those of co taken in the order a~+l, 

ai+2,...~ aN, a l ,  a2,..., a i. 

We have studied two slightly different nonlocal algorithms: one using a 
single pivot point, and one using a pair of pivot points. Let us consider first 
the 1-pivot algorithm. We first choose randomly a location i along the 
walk (0 ~< i~< N) to serve as the pivot point. We now consider splitting the 
walk at i into its two subwalks coo.~ and co~,N, inverting and/or permuting 
the two pieces, and then reassembling the walk. Clearly, there are 8 = 23 
possible outcomes, according as the first (resp. second) subwalk is or is not 
inverted, and the two subwalks are or are not permuted. However, these 
eight outcomes fall into four equivalence classes, with the two walks in 
each class being related by an overall inversion (a trivial symmetry 
operation). Therefore, it suffices to choose one representative from each of 
the four equivalence classes. In order to minimize the computer time, we 
choose in all cases to invert the shorter  of the two subwalks. The 
nonidentity operations are therefore reduced to three (see Fig. 5): 

1. P e r m u t e :  co ---r co' =__ p~co. 

2. Inver t :  

~co O, io l co i 'N  

co ---r CO' = I ico  ~ [ Ico O, io CO i, N 

3. Inver t  and  p e r m u t e  : 

, f l c o i ' N ~  O'i 

co ---r co =_ P i l i c o  = _ ~coi, N o  lcoO, i 

if i >~ N / 2  
(3.35) 

otherwise 

if i >~ N / 2  

otherwise (3.36) 

We choose randomly (with equal probability) one of these three 
operations, and compute whether the proposed new walk co' is indeed 
self-avoiding. (See Section 3.3 for details of how this computation is 
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Fig. 5. The cut-and-paste moves applied to the walk shown in (a). The star denotes the pivot 
for the following moves: (b) a permutation; (c) an inversion; (d) a combined inversion/ 
permutation. (e) The 2-pivot inversion, using the site denoted in (a) by an open square as the 
second pivot. 

performed.)  If  co' is self-avoiding, we accept it; otherwise, we make  a null 
transition. It  is clear that  the 1-pivot move  is N-conserving and satisfies 
detailed balance with respect to any probabi l i ty  measure  giving equal  
weight to each N-step SAW [in part icular,  the distr ibution (3.1)]. 

We remark  that  two successive permuta t ions  with different pivot  sites 
are equivalent  to a single permuta t ion :  

PjPico=Pkco with k=i+j(modN) (3.37) 

As ment ioned  previously,  the mot iva t ion  for the cut -and-pas te  moves  
is to speed up the slow modes  of the B F A C F  algori thm. Indeed,  it easy to 
see that  an inversion (or an invers ion/permuta t ion)  can produce  a change 
of order  N 2 in the area spanned by a large rectangular  configuration,  
producing  a walk that  can be reduced to a short  walk by ~ N B F A C F  
moves  (rather  than  ~ N  2 of them). 

On  the other  hand,  a pe rmuta t ion  can cause the area  ~ (co )  spanned 
by a walk to change by at mos t  an a m o u n t  of order  N. To  see this, 
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consider first the case of a self-avoiding polygon, i.e., a closed loop. Then 
a permutation is simply a redefinition of the origin, which does not change 
the area at all. Consider next the case of a SAW with endpoints which are 
nearest neighbors. The area of this object is obtained by appending an 
additional step from the final point back to the initial point, thereby creat- 
ing a closed loop. A permutation is equivalent to moving this "phantom" 
step to a different location with the loop, so that the area is changed by 
that of the strip swept out by this motion, which is at most equal to the 
diameter of the loop, i.e., of order N. A similar argument shows that for 
SAWs with endpoints separated by a distance x, the area change is at most 
Nx.  It follows that the permutations alone are not terribly efficient in 
destabilizing large quasirectangular configurations; it is necessary to use 
inversions as well. 

Let us now consider the 2-pivot algorithm. We begin by choosing 
randomly a pair of locations i, j along the walk (0 ~ i < j ~< N) to serve as 
the pivot points. Define now the operation I~, i which inverts the middle 
segment of the walk: 

Ii.jco _ coO, io icoi, j o (JJ j, N (3.38) 

The proposed new walk co'_= Ii, jco is then tested for self-avoidance: if it is 
self-avoiding, we accept it; otherwise, we make a null transition. Clearly 
this 2-pivot move is N-conserving and satisfies detailed balance. 

Let us now examine the relation between the 1-pivot and 2-pivot 
moves. On the one hand, the 1-pivot inversion is clearly a special case of 
the 2-pivot inversion: 

li_= SI,,N if i>~ N/2  
(3.39) 

,i otherwise 

(The 1-pivot permutation clearly cannot be expressed in terms of 2-pivot 
inversions.) On the other hand, the 2-pivot inversion is equivalent (modulo 
an overall inversion) to a composition of 1-pivot moves: 

~ ( P u _ J j _ i ) P i  if j - i < N / 2  

I~.j - ~ i ( p i ! i _  ~) P~ otherwise 
(3.40) 

Notice, however, that the intermedciate walk in the sequence of two 
1-pivot moves might not be self-avoiding. For example, if both ends of the 
walk are in culs-de-sac, then no permutation is possible, so that the corre- 
spondence (3.40) cannot be realized. In fact, for the configuration shown in 
Fig. 6, no 1-pivot move is possible, although 2-pivot moves can work 
perfectly well. 16 One might suspect, however, that such configurations are 

~6 We thank Neal Madras for pointing out this possibility. 
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Fig. 6. 

I T 
A "double cul-de-sac" configuration for which l-pivot moves are impossible. A choice 

for the pivots of a possible 2-pivot move is indicated by crosses. 

relatively rare, If so, then the 2-pivot algorithm cannot be much better than 
the 1-pivot algorithm (because any 2-pivot move would occur anyway with 
reasonable probability in the 1-pivot algorithm), although it can be some- 
what better because of the greater randomness in the choice of pivot points. 
Our numerical data (Section 4) bear out this expectation. 

Let us mention that both the 1-pivot and 2-pivot moves conserve not 
only the total number of links (N), but also the numbers of links in each 
direction ( N ( ,  N f  ..... Nff). Therefore, these pivot moves do not define an 
algorithm that is ergodic on each space ~N(x), so they cannot fulfill our 
hope of bringing about instant equilibration among the walks at  fixed N. 
However, they may still be capable of bringing about a good enough 
equilibration so that the remaining slow modes (those involving changes in 
N ( ,  Nf , . . . ,  N 2 )  can be brought about efficiently by the local (BFACF) 
moves. We discuss this further, in light of our numerical data, in Section 4. 
Let us also mention that Dubins et al., I2s~ Madras et a/., (29) and Janse van 
Rensburg et al. ~3~ have devised ergodic algorithms for fixed-N, fixed- 
endpoint SAWs (in any dimension), using the 2-pivot inversion (3.38) 
together with other 2-pivot moves involving diagonal reflections and axis 
interchanges. 

Finally, Madras et aL (29) have proven that the hybrid BFACF/2-pivot 
algorithm is ergodic, in any dimension and for any x va 0. 

3.3. Data Structures and Computat iona l  Complexi ty  

In this section we discuss the data structures that we use to represent 
the walks, and we analyze the computational complexity of the BFACF 
and cut-and-paste moves. The principal goal is to devise a data structure 
in which both types of moves can be implemented effficiently--that is, the 
BFACF moves in a time of order 1, and the cut-and-paste moves in a time 
of order N or less. 

Let us look first at the BFACF moves. The three principal operations 
are: 
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1. Select at random a link. 

2. Insert one or two sites (for a AN= 0 or + 2  move, respectively). 

3. Delete one or two sites (for a AN=O or - 2  move, respectively). 

Suppose first that the walk co= (coo, COl,..., con.) were stored as a sequen- 
tially allocated linear list {s(i)}N=0, where s(i) is an integer that codes the 
coordinates of the site coi. Then selection of a random link would be easy 
(time of order 1), but insertion and deletion of links would be very costly 
(time of order N) because of the need for "garbage collection" to keep the 
list ordered. Suppose, alternatively, that the walk co were stored as a linked 
(or doubly linked) linear list dispersed inside some large block of memory. 
Then insertion and deletion would be easy (time of order 1), but selection 
of a random link would be very costly (time of order N) because of the 
need to "thread through" the list sequentially. 

To get the best of both worlds, we use a contiguously allocated, doubly 
linked linear list. That is, the walk coordinates are stored in a contiguous 
array {s(i)}N=0, but not in any particular order; that is, s(i) codes some site 
of the walk, but not necessarily coi. To keep track of the sequence of steps 
along the walk, we use forward pointers {p+(i)}N=0 and backward 
pointers {p ( i )}x 0; here p+(i) [resp. p - ( i ) ]  is the index corresponding 
to the site following (resp. preceding) the site whose index is i, or - 1  if no 
such site exists. The initial and final points of the walk, which are fixed, are 
by convention allocated to indices 0 and 1, respectively. Therefore, 

s(0) codes coo ( = 0 )  

s(p+(0))  codes col 

s(p+(p+(O)) codes coz 

and so on. Likewise, 

s(1) codes CON(=X) 

s ( p - ( 1 ) )  codes (.0 N 1 

s(p ( p - ( 1 ) ) )  codes co N 2 

and so on. (See Table I.) We also keep a list of integers {b(i)}i~=o I with 
values in {1, 2 ..... 2d}, which code the direction of the step of the walk 
following site s(i); we enumerate the directions in such a way that direction 
2 d + l - I  is opposite to direction l. In principle, the list {b(i)}~--o 1 is 
redundant, since it can be computed by comparing s(i) to s(p+(i)), but its 
presence speeds up the program considerably. 
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A Typical Configuration of the Data  S t r u c t u r e ,  
S h o w n  f o r  a Walk Having N = 5  

i s(i) p+(i) p (i) 

0 ~Oo 5 - 1 
l co 5 1 3 

2 0)2 4 5 

3 co 4 1 4 

4 (2) 3 3 2 

5 co 1 2 0 

Finally, for purposes of self-avoidance checking we maintain a "bit 
table" in which each site of a large (512 x 512) square box is assigned one 
bit: this bit is set to 1 if the site is occupied by the walk, and 0 otherwise. 
Clearly such a table can be checked and updated in a time of order 1. [In 
dimension d~> 3, such a bit table might require a prohibitively large 
memory; if so, a "hash table ''(58'59~ could be used instead (ref. 23, 
Section3.4).] In principle, this means that we are simulating a SAW 
restricted to a 512 x 512 periodic box. However, in our simulations it is a 
very rare event for a walk to "reach around the box and touch itself," so 
the finite-size systematic errors are negligible. 

Let us now examine in detail how a BFACF upgrading is performed. 
First we pick (with uniform probability) an index iE {1, 2 ..... N}; then 
(s(p-(i)), s(i)) is a random link from the walk co. (Recall that the starting 
point of the walk is always assigned to index i=0 . )  Using the pointer 
arrays p + and the direction array b, we can classify the chosen link as case 
(i), (ii), (iii), or (iv) (see Section3.1), and choose randomly (with the 
appropriate probabilities) a proposed deformation. There are then three 
possibilities: 

(a) AN= +2 proposal. The two proposed new sites are checked in 
the bit table. If both of them are currently vacant, then they are 
inserted into the linear list at indices N +  1 and N +  2, with the 
appropriate changes made to the arrays p -+ and b. The bit table 
is also updated. 

(b) AN=O proposal. The proposed new site is checked in the bit 
table. If it is vacant, then it is inserted into the linear list at the 
index currently occupied by the site that is to be removed, with 
appropriate changes to the array b. The bit table is also updated. 

(c) AN =  - 2  proposal Two sites must be removed from the linear 
list; to keep the list contiguous, the entries that are currently in 
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the locations N -  1 and N take their place. The arrays p • and b 
are updated appropriately. The bit table is also updated. 

Clearly all these operations can be performed in a time of order 1 (i.e., 
independent of N). We remark that to speed up the definitions of the 
coordinates of the new points, we use a table which provides the (coded) 
coordinates for the neighbor to a given site in a given direction. 

Important Note. The algorithm that we have actually implemented in 
the work reported in this paper is slightly different: we pick (with uniform 
probability) an index ie  {0, 1,..., N}. If s(i) is not the last point of the walk, 
then (s(i), s(p+(i))) is a random link from co, and we proceed as before; 
otherwise we make a null transition. Because a given link is here chosen 
with probability 1/(N + 1 ), it follows that we are implementing a variant of 
the BFACF algorithm in which the invariant probability distribution is 

7"gfl(co) = ,.~(/~, X ) - I ( I c o l  + l)fl I~1 (3.1a) 

and the partition function is 

3(fl, x ) =  ~ ( N +  1) ~NCN(X ) (3.2a) 
N=O 

[instead of (3.1)-(3.2)]. This variant is slightly less efficient than the 
standard BFACF algorithm, because of null transitions occurring with 
probability 1/(N+ 1). 

When nonlocal moves are performed, drastic changes occur in the lists 
s and b and in the bit table. The changes in the bit table are tentative: 
we do not know until the end whether the proposed new walk will be 
accepted. We have therefore found it convenient to maintain two bit tables: 
at any given time, one is active and the other is scratch; a flag indicates 
which is which. The self-avoidance checking is carried out by writing into 
the scratch bit table (which is initially empty). If the proposed new walk is 
accepted, the scratch bit table becomes the active one (i.e., the flag is 
flipped); otherwise, the flag remains unchanged. At the end, the bit table 
that is now scratch (whichever one that is) is cleared. In order to facilitate 
this clearing, we maintain at all times two linear lists that specify which 
words of the two bit tables have nonzero entries. Finally, it is convenient 
to maintain active and scratch arrays also for the lists s and b: the tentative 
new entries are computed during the process of self-avoidance checking, 
and are placed in the scratch arrays; these become the active arrays if the 
proposed walk is accepted. However, this active/scratch procedure is not 
necessary for the lists p+ and p , since the changes to these lists in a 
successful nonlocal move are much less drastic: in a permutation only the 
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entries corresponding to the pivot and the endpoints of the walk need to 
be changed, while in an inversion no change in the lists p -+ need be made 
at all. 

We now come to a very important fact: during the pasting of a walk 
cut into pieces, a self-intersection is most likely to occur near the site(s) 
where the pasting occurs, if one occurs at all. We therefore begin the 
construction of the new walk at the pivot site(s), and continue by defining 
the other points alternating backward and forward along the walk (ref. 23, 
Section 3.4). As will be seen, this has an effect on the computational 
complexity: the mean CPU time for a failed nonlocal move can be 
arranged to grow only as a fractional power of N. (Of course, the CPU 
time for a successful nonlocal move is always of order N). 

Let us now define precisely the algorithm that we have implemented. 
First, we choose a random index i t  {0,..., N}. Next, we choose randomly 
to make either a nonlocal move (with probability Pn~) or a BFACF move 
(with probability 1 -  Pn~). Then: 

(a) BFACF move. If s(i) is the last point of the walk (i.e., i =  1), we 
make an immediate rejection. Otherwise we carry out the 
BFACF move, as described above, on the link (s(i), s(p+(i))). 

(b) Nonlocal move. This is different for the 1-pivot and 2-pivot 
algorithms: 

(i) 1-pivot algorithm. We choose randomly (with equal prob- 
ability) to perform either an inversion, a permutation, or a 
combined inversion/permutation. In the latter two cases, an 
immediate rejection is made if s(i) is either the first or last 
point of the walk ( i = 0  or 1). In the case of an inversion, 
an immediate rejection is made if s(i) is either the first, 
second, next-to-last, or last point of the walk [i = 0, p + (0), 
p (1), or 1], since these moves are simply the identity. If 
an immediate rejection is not made, then we "thread 
through" the linear list, starting at index 0, in order to 
determine whether the chosen pivot site s(i) is in the first or 
second half of the walk; this is needed, if an inversion is to 
be made, for determining which half of the walk should be 
inverted [cf. (3.35)-(3.36)]. 

(ii) 2-pivot algorithm. We choose randomly a second index 
j ~  {0 ..... N}. An immediate rejection is made if i = j ,  since 
such a move is simply the identity. An immediate rejection 
is also made if s(i) or s(j) (or both) is either the first or last 
point of the walk (i or j = 0  or 1), since such a move is 
either an overall inversion or else is equivalent to a 1-pivot 
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move. 17 Finally, an immediate  rejection is made if s(i) and 
s(j) are successive sites along the walk, since in that  case 
the move  is also the identity. If an immediate  rejection is 
not  made,  then we " thread through"  the linear list, starting 
at index 0, in order  to determine which of the two sites s(i), 
s(j) comes first in the walk. 

It is useful to define an effective probabil i ty for nonlocal  moves P~,~rr 
by disregarding those proposed  nonlocal  moves that suffer immediate 
rejections. A straightforward computa t ion  yields 

8 P~ for the 1-pivot algori thm 

Pm / 7 N - 5  \ p~ 
(N 7 i - ~ / +  -2- for the Z-pivot algori thm \ 

where p~ = c~(x)/Z(/3, x) is the probabil i ty of a 1-step walk. Clearly the first 
terms in (3.41) behave like ( I / N ) .  Note  that, from (2.4), 

N ( cons t  > 0 if ~smg < 0 
/%~ ~'N=Ofi CN(X) --  ~(fic--fl) ~ if 0 < C~sing < l \ X /  Z~v=oNflNCN(X) ((flc--fl) if O~sing ~" 1 

as/3 T/3~, while 

(3.42) 

finite if  0{sing < --1 
(N)- -Z~=oNZf lNCN(X)~( f lc_ f l ) - I  cqi,g if -- 1 < 0~sing < 0 

ZN=oNflNCN(X) ((fl~--fl)-~ if ~sing > 0 

Therefore,  

(3.43) 

const > 0 if Cqmg < 0 

I N )  ~ ~ ( N )  --~sing if 0 < ~sing 

{ ( N )  -1 if 0~sing > 1 

< 1 (3.44) 

Likewise, 

~'const > 0 if ~sing < 0 
Pl~(fl~--fl)~sing~((N}-~ng if O~sing > 0 (3.45) 

17 Our choice to reject when one but not both of s(i) and s(j) is an endpoint of the walk was 
motivated by the desire to study a "pure" 2-pivot algorithm, without 1-pivot moves. 
However, it would also be reasonable to allow such moves. 
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Now, in any dimension d < 4  we expect that asi.g>0, so pnt, e f r~p , t  as 
( N )  ~ oo. In Table II we report the measured values of P,l, eff as a function 
of p,~ and fl, for the 1-pivot and 2-pivot algorithms in dimension d - - 2  
(with endpoint [xl = 1). 

Let us now analyze the computational complexity of the nonlocal 
moves. Clearly a successful nonlocal move takes a time of order N, since 
it is neccessary to make N + 1 insertions into the bit table in order to verify 
that the proposed new walk is self-avoiding. However, the failed nonlocal 
moves could well take an average time considerably less than N if self- 
intersections tend to be detected early (i.e., by checking ~ N steps)--this is 
the motivation for constructing the proposed new walks starting at the 
pivot point(s) and working outward. In the pivot algorithm for free- 
endpoint SAWs, it was argued (ref. 23, Section 3.4) that the mean CPU 
time per failure behaves as ~ N 1 -q, where q is the critical exponent for the 
acceptance fraction ( f ~  N-q). It is natural to expect a similar behavior for 
the cut-and-paste algorithm. 

In our algorithm as currently implemented, however, all nonlocal 
moves have a contribution to CPU time that is proportional to N (albeit 
with a very small proportionality constant), because of the preliminary 
operations that involve "threading through" the linear list: for the 1-pivot 
algorithm, to determine whether the pivot site s(i) is in the first or second 
half of the walk; and for the 2-pivot algorithm, to determine which of the 
two sites s(i), s ( j )  comes first in the walk. Asymptotically for large ( N )  it 
would be preferable to avoid these contributions: for the l-pivot algorithm, 
by abandoning the insistence on inverting always the shorter segment of 
the walk; and for the 2-pivot algorithm, by arranging the computation so 
that it is not necessary to know a priori whether s(i) precedes or follows 

Table II. Pn/.eff/Pn/ at Various p for the 
One-Pivot and Two-Pivot  Algorithms 

P nl, e~/P nl 

fl (N) 1-Pivot 2-Pivot 

0.3690 20.3 0.60 0.43 
0.3728 33.2 0.67 0.52 
0.3744 43.9 0.70 0.57 
0.3760 65.4 0.74 0.63 
0.3771 102 0.79 0.70 
0.3778 158 0.84 0.75 
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Table II1. CPU Time in Microseconds As a Function of Pnl at Various 
for the One-Pivot  Algor i thm 
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( N )  p~l= 0.01 =0.05 =0.10  =0.25 X 

0.3690 20.3 46 55 68 102 411 
0.3728 33.2 50 65 82 135 582 
0.3744 43.9 52 71 95 161 678 
0.3760 65.4 56 83 121 227 889 
0.3771 102 61 104 167 352 1618 
0.3778 158 74 140 237 473 2278 

s(j) along the walk. 18 However, for the modest values of N considered 
here, this modified algorithm is probably not advantageous. 

We report in Tables III and IV the computer time on a VAX 8650 
(running VMS Fortran) for a Monte Carlo step as a function of Pnz for the 
1-pivot and 2-pivot algorithms at various values of ( N ) .  Clearly the local 

18 Recall how the proposed walk co' is constructed if s(i) precedes s(j) along the walk: the 
algorithm works outward starting at the pivot points s(i) and s(j), which stay fixed; the 
steps of the walk preceding s(i) are rewritten in place, as are the steps following s(j) ;  while 
the steps following s(i) are overwritten with those preceding s(j), and vice versa. All this 
is carried out using the pointers p+.  The result is co'=-co~ (Here we suppress, 
for notational simplicity, the distinction between indices along the walk and those in the 
linear list.) Now, what happens if we apply this same algorithm, but  it turns out that  s(i) 
in fact follows s(j)? It is not hard to see that the algorithm constructs a well-defined walk 
co' whose sequence of steps is exactly that of IcoJ'Uoco~'Jolco ~ but which runs from 
s ( i ) + s ( j ) - x  to s(i)+s(j) rather than  from 0 to x. In this case it is easy to carry out at 
the end an overall inversion and translation to the origin, to produce the desired walk o0'. 
This latter operation takes a time of order N, but  is performed only for successful nonlocal 
moves. 

Table IV. CPU Time in Microseconds As a Function of Pm at Various 13 
for the Two-P ivot  Algor i thm 

fi (N)  p.r=0.01 =0.05 =0.075 =0.10 =0.15 X 

0.3690 20.3 47 53 56 60 66 420 
0.3728 33.2 49 60 67 75 89 640 
0.3744 43.9 52 66 - -  84 - -  735 
0.3760 65.4 53 75 84 94 123 856 
0.3771 102 58 91 110 123 164 1163 
0.3778 158 62 120 144 167 248 1792 
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upgradings take a time which does not depend on the length of the walk; 
hence the mean time per iteration can be written as 

T ~ ( 1 - P~t) T1oc + P~,. erfX( ( N )  ) (3.46) 

where Tloo is the computer time for the local (BFACF) moves, and 
X((N)) is the mean time for a nonlocal move that is not immediately 
rejected. From this relation we determine experimentally the function 
X((N)). We find that X((N)) grows a bit slower than linearly in ( N ) ,  
for the values of ( N )  considered here; a reasonable fit is X ~  ( N )  ~176 
This exponent is roughly comparable to the exponent 0.81 obtained by 
Madras and Sokal (23) for the pivot algorithm for walks of fixed length and 
free endpoints. 

4. N U M E R I C A L  RESULTS 

We performed runs of both the 1-pivot and 2-pivot algorithms, on 
two-dimensional SAWs with fixed endpoint Ix] = 1, at a sequence of values 
o f / /  yielding average walk lengths ( N )  ranging from ~20  to ~160. At 
each// ,  we tried values of Pn~ ranging between 0.01 and 0.15-0.25. We also 
did a few runs at pn~ = 0.50 and 0.75 for the smaller values of ft. Tables V 
and VI show the parameters of our principal runs. In all cases we took 
data once every ,~rint, U/10 Monte Carlo steps, and the r u n  lengths were 
typically a few thousand times Tim, u. We also quote data for pnt= 0 (pure 
BFACF algorithm) taken from ref. 10, to which we have added a run 
of 1.8 x 10 l~ iterations at / /=0.3771 (taking data once every 1.8 x 10  4 

iterations). 
We also made some runs of the 2-pivot algorithm in which each 

nonlocal move consisted of 10 "hits," for the purpose of testing whether the 

Table V. Parameters of Our Runs for the One-Pivot  A l g o r i t h m  a 

Run length  
D a t a - t a k i n g  

]~ in terval  P.t = 0.01 Pn /=  0.05 P~t = 0.10 P.I = 0.25 

0.3690 1 • 103 4.0 x 108 3.0 x 108 2.0 x 108 2.0 x 108 
0.3728 5 x 103 5.0 x 108 5.5 x 108 5.0 x 108 2.5 x 108 

0.3744 1 x 104 1.5 x 109 1.0 x 109 1.0 x 109 8.65 x 108 
0.3760 2 • 104 2.6 • 109 2.2 • 109 1.8 • 109 7.7 x 108 

0.3771 4 • 104 5.2 x 109 4.0 • 109 4.0 • 109 1.16 x 109 
0.3778 8 • 104 7.2 x 109 4.0 • 109 1.2 • 109 1.2 x 109 

All t imes are measu red  in M C  steps. 
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Table VI. Parameters of Our Runs for the Two-P ivot  Algori thm a 

33 

Run length 

Data-taking 
/3 interval PnJ = 0.01 P.z = 0.05 P~/= 0.075 Pn/= 0.15 

0.3690 1 x 103 5.0 x 108 - -  4.0 x 10 s 4.0 x l0 s 
0.3728 5 x 103 5.0 x 108 - -  2.5 • 108 2.5 x 108 
0.3744 1 x 104 5.0 • 108 5.0 • 108 - -  - -  
0.3760 2 x 104 1.8 x 109 1.2 • 109 8.0 x 108 1.2 x 109 
0.3771 4 • 104 1.2 x 101~ 2.8 • 109 2.8 • 109 1.6 • 109 
0.3778 8 x 104 2.4 • 109 4.0 • 109 4.0 x 109 1.5 • 109 

All times are measured in MC steps. 

Table VII. Parameters of Our Runs for the Two-Pivot  Algori thm 
wi th  Ten "'Hits "'a 

Run length 
Data-taking 

fi interval P,l = 0.001 P,r = 0.005 P,,z = 0.010 

0.3690 1 x 103 1.5 x l0 s 1.5 x 108 1.0 x 109 
0.3728 5 x 103 5.0 x 108 5.0 x 108 5.0 x 108 
0.3744 1 • 1 0  4 1.0 • 1 0  9 9,0 x 108 9.0 x 108 
0.3760 2 x 104 3.2 • 109 8.0 x 108 8.0 x 108 
0.3771 4 • 104 6.0 x 109 5.2 • 109 2.7 x 109 
0.3778 8 • 104 2.4 • 109 2.4 • 109 2.4 • 109 

a All times are measured in MC steps. 

Table VIII. Best Estimates of Stat ic Means of N (Number  of Bonds in Walk ) ,  
N 2, S z (Squared Radius of Gyrat ion),  and J~r (Area Enclosed by Walk)  a 

fl ( N )  (N  2 ) 2 (SN) ( I d l )  

0.3690 20.3 (0.2) 1189 (23) 8.3 (0.2) 20.7 (0.5) 
0.3728 33.0 (0.3) 3197 (111) 17.2 (0.4) 43 (1) 
0.3744 44.2 (0.5) 5588 (204) 26.1 (0.6) 60 (1) 
0.3760 65.3 (0.7) 12135 (360) 46 (1) 117 (2) 
0.3771 102 (1) 29576 (879) 91 (2) 228 (5) 
0.3778 158 (4) 73179 (3626) 177 (6) 445 (15) 

Estimates are weighted means combining data from all runs. Standard error is shown in 
parentheses. 

822/60/1-2-3 
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n o n l o c a l  moves  are efficient " r a n d o m i z e r s "  at fixed N (see Sect ion  5 for 
fur ther  d iscuss ion) .  Th e  p a r a m e t e r s  of these runs  are s h o w n  in Tab l e  VII .  

W e  have  ana lyzed  the d a t a  us ing  s t a n d a r d  p rocedures  of s tat is t ical  

t ime-ser ies  analysis(6~ m o r e  detai ls  can  be f o u n d  in  ref. 23, A p p e n d i x  C. 

W e  used in  all  cases a se l f -consis tent  t r u n c a t i o n  w i n d o w  of wid th  5ri,t.A. 

I n  Tab l e  V I I I  we r epor t  o u r  best  es t imates  for the m e a n  va lues  of N, 
N 2, S2N, a n d  IsCl (see Sec t ion  2.1 for def in i t ions) ,  o b t a i n e d  by  c o m b i n i n g  
d a t a  f rom all runs .  

In  Tab les  I X - X I  we r epo r t  o u r  es t imates  of the a u t o c o r r e l a t i o n  t ime 

Zint, N a s  a f unc t i on  of/~ a n d  Pnt. F o r  the  1-pivot  a lgo r i thm,  we also r epor t  
es t imates  of Zint, d (here s~r is the signed area).  F o r  the  2 -p ivo t  a lgor i thm,  

Zint, d is essent ia l ly  zero. 19 All o the r  obse rvab les  show d y n a m i c  b e h a v i o r  
tha t  is qua l i t a t ive ly  s imi lar  to tha t  of  N :  the a u t o c o r r e l a t i o n  t imes of N 2, 

S 2,  a n d  1=~r I are  in  all cases r o u g h l y  o n e - a n d - a - h a l f  t imes  tha t  of  N (up  to 

s ta t is t ical  error) .  

i9 This is easy to understand. For a closed loop, the mean value of d ( t  = 1) conditional on 
co(t = 0) is zero by symmetry: each segment of the walk has the same probability of being 
chosen for inversion as the complementary segment, and the resulting walks are equivalent 
by overall inversion; in particular they have equal and opposite signed areas. Therefore the 
autocorrelation function of d vanishes at all nonzero time lags. For a walk with fixed x r 0, 
the autocorrelation time of ,~r is not strictly zero, but it is negligible on the time scale we 
are looking at. 

Table IX. Autocorre la t ion Times for  the  One-P ivo t  A lgor i thm ~ 

/3 P~t = 0 P,,t = 0.01 Phi = 0.05 P~l = 0.10 Pnt ~ 0.25 

0.3690 5.7 (0.2) 4.3 (1.2) 3.1 (0.6) 2.4 (0.6) 2.3 (0.6) 
6.1 (2.0) 3.4 {0.8) 1.8 (0.4) 1.0 {0.2) 

0.3728 23 (1) 11 (1) 8.1 (0.5) 7 (1) 5 (1) 
11 {1) 5.0 (0.2) 3.4 (0.2) 1.8 (0.1) 

0.3744 50 (3) 27 (3) 16 (2) 15 (2) 10 (2) 
5.9 (0.4) 3.8 (0.2) 2.0 (0.1) 

0.3760 190 (14) 64 (8) 39 (4) 29 (3) 32 (5) 
29 (3) 10.2 (0.4) 6.7 (0.4) 

0.3771 547 (86) 169 (27) 70 (8) 80 {10) 56 (8) 
592 (96) 46 (4) 10.8 (0.4) 8.4 (0.3) 

0.3778 - -  464 (114) 216 (32) 168 (30) 120 (30) 
40 (2) 12.0 (0.3) 8.6 (0.5) 4.4 (0.4) 

a First row is "tint, N; second row is 77int,.~. All times are measured in units of 10 4 MC steps. 
Standard error is shown in parentheses. 
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Table X. Autocorre la t ion  Times Tint. N for  the T w o - P i v o t  A lgor i thm ~ 

fl P~l = 0 P.l = 0.01 p . / =  0.05 P.l = 0.075 p.~ = 0.15 

0.3690 5.7 (0.2) 3.5 (0.5) - -  2.2 (0.2) 1.8 (0.2) 
0.3728 23 (1) 14 (2) - -  10 (1) 7 (1) 
0.3744 50 (3) 32 (8) 10 (2) - -  - -  
0.3760 190 (14) 32 (2) 24 (3) 21 (2) 22 (2) 
0.3771 547 (86) 82 (8) 82 (12) 72 (5) 48 (8) 
0.3778 - -  328 (83) 198 (41) 95 (14) 123 (25) 

aAll times are measured in units of 104 MC steps. Standard error is shown in parentheses. 

It can be proven (see Theorem A.5 in the Appendix) that, at fixed/~, 
1/(rint,A + 1/2) is a c o n c a v e  function of Pnz for any observable A. This 
theorem provides a good check on our numerical data, and also signals 
which data points may be too high or too low due to statistical fluctua- 
tions. Our data show, in fact, a broad "plateau" in which rint, A is 
reasonably close to its minimum value; this region ranges roughly between 
p,,t= 0.1 and pnt= 0.5, and does not seem to change with/~. For p~l~< 0,1, 
rim, A at fixed fl seems to grow like 1/p~ ~ On the other hand, if we fix P,1 
and vary /~, then zint, A grows according to (3.27) with dynamic critical 
exponent 

PA = 2.0 + 0.2 (4.1) 

This should be compared with the exponent 

PA = 3.0 + 0.2 (4.2) 

for the pure BFACF algorithm (p . l=  0); see Fig. 7. 

Table Xl. Autocorre la t ion  Times Tint. N for  the T w o - P i v o t  A lgor i thm 
w i th  Ten "'Hits ''a 

p~t=O p.l=O.O01 pn/=O.O05 p~l=O.OlO 

0.3690 5.7 (0.2) 3.5 (0.5) 2.5 (0.3) 1.9 (0.3) 
0.3728 23 (1) 11 (1) 6.5 (1) 6.5 (1) 
0.3744 50 (3) 23 (4) 13 (2) 10 (1) 
0.3760 190 (14) 44 (4) 24 (4) 24 (4) 
0.3771 547 (86) 106 (12) 80 (8) 66 (8) 
0.3778 - -  456 (88) 168 (48) 112 (16) 

a All times are measured in units of 104 MC steps. Standard error is shown in parentheses. 
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Fig. 7. 
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Log log plot of "tint, N as a function of ( N )  for P.l = 0 (pure BFACF algorithm) and 
Pn/= 0.25 (1-pivot algorithm). 

The exponent (4.1) is in fact the best that can be obtained by any 
variable-N algorithm that makes bounded changes in N (in our case 
IANI <~ 2) in each move. This is because the observable N will, in the best 
case, perform a random walk on the nonnegative integers, leading to rexp, 
"Cint, U ~ ( N )  2. A rigorous proof of this theorem can be found in the 
Appendix: see Theorems A.6 and A.7 and Example 2 following the latter. 
(Let us remark that fixed-N algorithms, such as the pivot algorithm for 
free-endpoint SAWs, can in some cases achieve a dynamic critical exponent 
that is nearly zero. (23)) 

In Fig. 8 we plot "~int, N / ( N )  2 v e r s u s  Phi, off for various values of/~. The 
data points fall roughly onto a single scaling curve, i.e., 

"~int, N(/3, Pnl) ~'~ ( N )  2 Y(Pnl)  (4.3) 

as/3 T/3c, for some scaling function ~ .  As noted above, ~ - (P , t )~  1/P~t ~ as 
p,z$0. 

Up to now we have used as a unit of time the number of steps in the 
Monte Carlo procedure, but clearly we are more interested in computer- 
time (CPU) units. We want to know how much time our computer must 
run to produce results with the chosen statistical error bars--after  all, it is 
this time which has an influence on our budget! While in the BFACF 
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Fig. 8. Plot of zi., ,N/(N) 2 versus p.~ for various values of fi (1-pivot algorithm). The points 
fall roughlyonto a scaling curve ,~(P.l). 

algorithm the "physical" and CPU units of time are in a constant ratio, this 
is not the case for the hybrid algorithm, because the computational 
complexity of the nonlocal moves increases with ( N ) .  At fixed fl, we have 
found (see Section 3.3) that the CPU time per Monte Carlo step behaves 
according to (3.46), where empirically 

X ~  ( N )  ~ -+ ~ (4.4) 

Using the relation 

rohy s ~ (N)~2/p~0.3 (4.5) 

together with (3.46) and (4.4), we obtain 

rcpu ~ ( N )  -~2[(1 --  p , , )T ,or  + p . , T ' ( N )  ~o.8]/p~O.3 (4.6) 

Elementary calculation then shows that the optimum value of P,,I scales as 

P n L o p t  ~ 1 / ( N ) ~ 0 . 8  (4.7) 

- - t ha t  is, we should spend a roughly equal amount of CPU time on local 
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and nonlocal moves--and the resulting CPU time per "effectively inde- 
pendent data point" scales as 

ZcPu ~ (N)~2.3 (4.8) 

pure BFACF algorithm This is significantly better than the 
(~cPu ~ ( N ) ~ o ) .  

5. C O N C L U S I O N S  

Our initial attempt to understand the dynamic critical behavior of the 
hybrid BFACF/cut-and-paste algorithm was based on the idea that one or 
a few nonlocal moves would act as an efficient "randomizer" around the 
subspace of fixed N (and fixed number N~, N~ ..... N~ of links in each 
direction). This idea is motivated by the behavior of the pivot algorithm for 
free-endpoint SAWs, (23) in which ,~N ~~ attempted nonlocal moves are 
sufficient to equilibrate all global observables. If this conjecture were 
correct, then the local (BFACF) moves would carry out a random walk in 
N, leading to ~ ~ ( N )  2. One would further expect that this behavior could 
be achieved with a rather small P~t, possibly of order ( N ) - 2 :  for if a 
single nonlocal move were a good randomizer, then this randomization 
would need to be repeated only once every autocorrelation time of the 
combined algorithm, i.e., once every time ~ ( N )  z. That is, we would 
conjecture a scaling behavior of the form 

Tint, N(fi, Pnl) "~ ( N )  2 ~(Pnt (  N )  r) (5.1) 

with r g 2. However, our numerical data do not support this conjecture: we 
find that a scaling form (5.1) does indeed hold, but with r ~ 0 !  

In order to obtain a better understanding of the effect of the nonlocal 
moves, we made some runs in which a single nonlocal move consists of ten 

2-pivot inversions rather than one. If the 2-pivot inversions were indeed 
perfect randomizers around the given subspace, then ten hits would be no 
better than one. (In mathematical terms, the transition probability matrix 
for 2-pivot inversions would be approximately idempotent, P~-piv ~ P2-piv 
for all n > 1.) However, our numerical data show that ten inversions are 

better than one. Indeed, the 10-hit algorithm with a given Pnt has 
essentially the same autocorrelation time as the 1-hit algorithm with 10p,l. 
What really matters, therefore, appears to be the total number of nonlocal 
"hits"; it is essentially irrelevant whether they are performed one after 
another or interspersed with the local moves. We conclude that the matrix 
P2-piv is very f a r  from being idempotent. 

Therefore, our initial conjecture that a small (of order ( N )  ~~ 
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number of nonlocal moves would act as an essentially perfect randomizer 
at fixed N appears to be far from correct. 2~ On the other hand, if we use 
a larger number of nonlocal moves--p, t  constant as ( N )  --* 0% leading to 

( N )  2 nonlocal moves per autocorrelation time of the combined algo- 
r i t h m - t h e n  the hybrid algorithm does achieve the predicted z ~  ( N )  2 
behavior. As the number of nonlocal moves is reduced, the performance of 
the hybrid algorithm deteriorates, but only rather slowly ( ~  1/p~~ 
Indeed, this latter exponent can be predicted by the following heuristic 
argument: We known that the pure BFACF algorithm has an autocorrela- 
tion time "Cint. N ~ ( N )  p with p ~  3.0. Clearly, if we were to make only one 
nonlocal move per autocorrelation time of the pure BFACF algorithm, 
then that nonlocal move would be essentially redundant (i.e., the 
autocorrelation time would not change much); while if we were to make 
nonlocal moves significantly more often than this (i.e., some power of ( N )  
more often), then one might expect the dynamic critical exponent to be 
reduced. Suppose, then, that the autocorrelation time zint,:v of the hybrid 
algorithm has a scaling behavior (5.1) with W ( y ) ~  y-S for some exponent 
s. Setting pnt~ ( N ) - P  in (5.1) and insisting that "Cint, m ~ ( N )  p, w e  obtain 
(N)2 rs+ps.. (N)p;  hence s = ( p - 2 ) / ( p - r ) .  If we now insert p ~ 3 and 
r ~ 0, we obtain s ~ 0.3. 

Our understanding of the behavior of the hybrid algorithm is therefore 
self-consistent but still somewhat incomplete. One would like to understand 
why the nonlocal moves are less efficient randomizers than we had initially 
thought- - that  is, one would like to understand why r is approximately 
zero rather than approximately 2. We suspect that this is related to the 
presence of large but not precisely rectangular configurations (of area 
sg ~ N 1+~ with 0 < e < 1) that require many (of order N 6) nonlocal moves 
in order to be reduced to a walk with area ~ N. 

In any case, the nonlocal moves are sufficiently powerful that even 
with p,,z as small as 1/(N)~~ maximum we can afford in terms of 
computer t ime--the autocorrelation time is still only ~ ( N )  ~23. This 
exponent is not far from the "ideal" exponent 2, and is considerably lower 
than the BFACF exponent ~3.  In practice, this means that already at 
( N )  ~ 100 we find a physical (resp. CPU)  autocorrelation time for the 
hybrid algorithm with p,~t= 0.05 that is a factor 6 (resp. 4) smaller than 
that of the pure BFACF algorithm. Moreover, for larger ( N )  the gain will 
improve as ~ ( N )  ~~ The hybrid algorithm provides, therefore, a sub- 
stantial improvement over previous algorithms for fixed-endpoint SAWs. 

20 Vaguely similar behavior occurs in the Swendsen-Wang 161) algorithm for the Potts model, 
which has nontrivial critical slowing-down in spite of the nonlocality of the algorithm/62) 
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A P P E N D I X .  S O M E  R I G O R O U S  B O U N D S  

In this Appendix we prove some rigorous bounds on the autocorrela- 
tion times "~exp and rint.A of reversible Markov chains. These theorems fall 
into three categories: 

1. Comparison theorems (Theorems A.1-A.3). 

2. General properties of "hybrid" Monte Carlo algorithms P~o= 
(1 - 2)P0 + 2P1 (Theorems A.4-A.5). 

3. Bounds based on random-walk ideas (Theorems A.6-A.7). 

For notational simplicity, we consider Markov chains whose state 
space S is discrete (i.e., finite or countably infinite); however, all our 
theorems and proofs carry over immediately to the case of a general 
(measurable) state space, with only minor notational alterations (replacing 
matrices by kernels, and sums by integrals). 

Let, therefore, P = { Pxy }~, y e s be an irreducible transition probability 
matrix on S, and assume that P has a stationary probability distribution 

(necessarily unique). Let 12(rc) be the space of complex-valued functions 
on S that are square-integrable with respect to ~. This is a Hilbert space 
with inner product 

(f, g) - ~ f ( x ) *  g(x) (A.1) 
x 

and norm Ilfl] - (f, f)1/2. The matrix P acts naturally on 12(~) by 

(Pf)(x) = ~ Pxy f ( Y )  (A.2) 
Y 

It is not hard to show that P is a contraction on 12(rt), i.e., IIPfLI ~< Ilfll for 
all f e / 2 ( g ) ;  in particular, the spectrum of P lies in the closed unit disk. The 
constant function 1 is an eigenvector of P (and of its adjoint P*) with 
eigenvalue 1, and this eigenvalue is simple. Let R be the spectral radius of 
P acting on the orthogonal complement of the constant functions: 

R =-inf{r: spec(P [" l ~ ) c  {Z: 121 ~<r}} (A.3) 

Then it can be shown (51) that R = e -l/~xp. 
It is convenient to introduce the operator H defined by 

(Hf)(x)  = ~, rty f ( y )  for all x (A.4) 
Y 

Clearly H f =  (1, f ) l  = ( f ) ~ l ,  so H is the orthogonal projection in 12(~) 
onto the constant functions. Therefore, H •  is the orthogonal 
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projection in 12(7r) onto the orthogonal complement of the constant 
functions, i.e., the functions f having ( f } ~ = 0 .  It is easy to see that 
H P  = P H - -  H. 

From now on we restrict attention to Markov chains that are 
reversible (i.e., satisfy detailed balance) with respect to ~ [cf. (2.36)]. This 
condition is equivalent to the self-adjointness of P on 12(~). The spectrum 
of P therefore lies in the interval [ - 1 ,  1]; there is a simple eigenvalue at 
1 with eigenvector equal to the constant function, and we wish to know 
how close the rest of the spectrum gets to 1. We define therefore the 
spectral gap (or mass gap) 

m -  1 - s u p  spec(P ~ 1 • (A.5) 

By the Rayleigh-Ritz principle, 

( f  ( I -  P) f )  
m = sup 

fe  1-- ( f  f )  
f ~ O  

We also define the modified autocorrelation time 

(A.6) 

, _ { o 1 / l o g ( 1 - -  m) if m < l  (A.7) 
~xp = if m >/1 

r'exp is very much like rexp except that it is controlled by the spectrum of P 
near + 1 only, while r~xp is controlled by the spectrum near both + 1 and 
- 1. For  most purposes in Monte Carlo work, only the spectrum near + 1 
matters (see ref. 51, note 8, for further discussion). 

Next we introduce the limiting covariance operator 2~ 

{~+P)/(I - P )  on 1 • 
C=- (A.8) 

on 1 

C is self-adjoint and positive-semidefinite. (If m=O,  then C is an 
unbounded operator, but it is in any case densely defined.) C is called the 
"limiting covariance operator" because of the following fact: 

Proposition A.1. (a) Let f~l=(~r), and let Xo, X1 .... be the suc- 
cessive states of the Markov chain P started in its stationary distribution 
g. Then the limiting variance of the sample mean of f is given by 

, l im nva r  = = ( + o o  if f r  

=1 For Markov chains with finite state space, the limiting covariance matrix is discussed in 
ref. 53, Sections 4.6 and 5.1, and ref. 54, Sections 4.3.5 and 4.4.4. 
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[Here ~(C) is the quadratic form domain of C; see ref. 63, Section VIII.6, 
or ref. 64, Chapter 6, for a definition and discussion.] 

(b) Let f,  gE~(C). Then the limiting covariance of the sample 
means of f and g is given by 

Proof. 

- g ( X ,  = ( f  Cg )  (A.10) 
n ~ o o  t = l  F / t = 1  

By time-translation invariance (stationarity), 

 cov(  
1 

f(X,), n 2 g(X,) 
t = l  

cov(f(Xs),  g(X,)) 
n s , l =  1 

= ~ 1 -  c o y ( f  (X0), g(Xt)) 
t =  (n-- I) 

-- ~, 1 - (H• P"IH• 
t =  --(n 1) 

(A.11) 

where we have used the self-adjointness of P to handle the terms with t < 0. 
The sum (A.11) is a Cesaro sum. To prove that it converges to the claimed 
limit, we use the spectral theorem: Let dE(2) be the spectral measure for 
the operator P, and let dl~fg(2 ) = (H• dE(2) Hig). Consider first the case 
f, ge~(C). The d#jg is a finite complex measure on the interval [ - 1 ,  1) 
satisfying 

f 
l 1 + 2  
-~ ~ dL#sgl (2) < ~ (A.12) 

Now (A.11) is equal to 

( 1-- f 21t, d#fg(2)= f + 2  2 2 ( 1 - ) f ) ]  

t = - - ( n  1) (A.13) 

It is not hard to see that the brackets are bounded between 0 and 
(1 + 2)/(1 - 2) + (4/n). Moreover, for each fixed 2 ~ [ -  1, 1), the brackets 
tend to (1 + 2 ) / ( 1 -  2) as n--* oo. It therefore follows from (A.12) and the 
Lebesgue dominated convergence theorem that (A.11) tends to 

i l + 2 d  2 
f-1 ~ ~fg( ) (a.14) 

as n --* oo. But this equals (f, Cg). 
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If f = g r  then d#ff is a finite positive measure on [ - 1 ,  !) 
satisfying 

f l 1 + 2  
-1 1 - - - ~  d#ff(2) = +oo (A.15) 

But then the bounds proven earlier imply, by Fatou's lemma, that (A.11) 
tends to +oo. | 

Rephrasing this theorem in terms of autocorrelation times, we have 

1 (f, cf)  
I"int,f-- 2 (f, i lZf ) (A.16) 

for any nonconstant f e  ~(C) [and Tint.f = -1-OO if f r  
Let us recall, finally, that the autocorrelation function of an observable 

f e  12(x) can be written as 

Cff(t) = (f, (P"f - I1).f) 

= (H ' f ,  Pl'lll• (1.17) 

By the spectral theorem, this implies 

f l  da~),.(2) (A.18) @ (0= , 21,1 

where &rff is a positive measure. I t  fol lows that 

1 Sl , [ (1  + ;.)/(1 - ; . ) ]  d~jf(;.) 

1 1 +pH(i)  
> 2  1 - p#(1) (1.19) 

by Jensen's inequality [since the function 2~-+ (1 + 2 ) / ( 1 -  2) is convex]. = 
One method for proving lower bounds on "Cint. f (and hence also o n  rexp) is 
to compute an explicit upper bound on the Rayleigh quotient 

(f, ( I - P ) f )  C f f ( 0 ) - C f f ( 1 )  
- = 1 -p f f (1)  (1.20) 

( f  ( I -  U ) f )  Cff (0) 

We will use this method in the proof of Theorem 1.7 below. 

22 It also follows from (A.18) that pff(t)>~ pt f (1)  it' for even values of t. Moreover, this holds 
for odd values of t if daft is supported on 2 ) 0  (though not necessarily otherwise). 
Therefore, the dcecay as t--+ oo of pf f ( t )  is also bounded below in terms of P,9'(1). 
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We now discuss the comparison of two reversible Markov chains P 
and P' that both satisfy detailed balance for the same stationary distribu- 
tion ~z. Let us first recall that if A and B are bounded self-adjoint operators 
on a Hilbert space ~4( ~, we write A ~< B in case (f, A f)<<, (f, Bf) for all 
f e  H .  If A and B are unbounded but positive-semidefinite, A ~<B has the 
same meaning provided we make the convention that (f, A f ) =  +or 
whenever f r  ~(A), and likewise for B. 

So let P and P' be two transition probabilities that satisfy detailed 
balance for re, and let C and C'  be the corresponding limiting covariance 
operators. We then have the following easy comparison theorems: 

t z ~  t t T h e o r e m  A.1. Assume that P~< P'. Then "t'exp(P ) ...:'Cexp(P ). More 
generally, assume that ( I -  P) >~ c~(I- P') for some c~ > 0. Then re(P) ) 
c~m(P'); and if e~> 1, then Z'~xp(P)<~ct-aZ'exp(P'). 

Proof. From the Rayleigh-Ritz principle (A.6), it follows that 
m(P) >~ctm(P'). The final claim follows from the fact that the function 
m ~-* - l o g ( 1 - m )  is increasing and convex. ] 

Theorem A.2. (a) P ~< P' if and only if C ~< C'. 

(b) More generally, for any c<>0, (I-P)>~c~(I-P') if and only if 
( C +  I) ~< c~-1(C ' + I) on 1 • {In terms of autocorrelation times, this says 
that zim.f (P) + 1/2 <~ c~-l [zint.f+ 1/2] for all observables f e  12(zc). } 

Proof. On 1 l ,  C + I = 2 / ( I - P )  and C'+I=2/ ( t -P ' ) .  The theorem 
then follows from the well-known fact that 0~<A~<B implies 
0<~A l~<B-t.23 II 

t T h e o r e m  A.3. Assume that Pxy ~>Pxy for all x4= y. Then P~< P'. 
t More generally, assume that Pxy/> ePx~ for some ~ > 0. Then ( I - P ) / >  

e(I-P' ) .  

Proof. An easy computation shows that 

(f, ( I -  P ) f )=  �89 ~ nxPxy ] f ( x ) -  f(Y)l 2 (A.21) 
X ,  y 

and likewise for P'. If pxy>~c~p'~y for all x-~y, then (f, (I-P)f)>~ 
c~(f, ( I -  P')f). | 

23 This result is a special case of L6wner's theorem. (66'67) On the other hand, there is a very 
elegant elementary proof(68): noting that (f, A-If)= supg [2(g, f ) -  (g, Ag)] and likewise 
for B, the result follows immediately. 
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Remarks. 1. Combining Theorems A.2 and A.3 for c~ = 1, we see that 
! t t Px~ >~ Pxy for all x # y implies C~< C, hence qnt.~(P)<<,zinf, f ( P  ) for all 

observables f This result was first proven by Peskun. (65) 

2. The intuition behind Theorem A.3 (as combined with Theorems 
A.1 and A.2) is very natural: if P makes more transitions than P', it should 
equilibrate faster. However, it should be emphasized that this intuition is 
valid in general only for reversible Markov chains. Consider, for example, 
an Ising model at infinite temperature. If the sites are updated sequentially 
using a single-spin-flip Metropolis algorithm, then every spin-flip proposal 
is accepted, and the spins oscillate up and down deterministically; in 
particular, the Markov chain is nonergodic, so the algorithm never reaches 
equilibrium (1 is an eigenvalue of P [" 1 ~). By contrast, if the single-spin-flip 
heat-bath algorithm were used, the acceptance probability would be 1/2, 
and the Markov chain would be ergodic and aperiodic (the spectrum of 
P ~' 1 • would be contained strictly inside the unit circle). This example 
does not contradict Theorem A.3, because the heat-bath algorithm with 
sequential site updating is not reversible. (It is a product of single-site 
updates, each one of which satisfies detailed balance, but the product does 
not, because the factors are noncommuting.) If random rather than 
sequential site updating wereused, then both the Metropolis and heat-bath 
algorithms would be reversible, and Theorem A.3 would apply. We thank 
one of the referees for reminding us of this example. 

Example. In the BFACF algorithm, the maximum possible values of 
p (+2 )  and p ( - 2 )  are given by (3.14) and (3.16), while the maximum 
possible value of p(0) is 1/2. Therefore, the BFACF algorithm with the 
choices (3.14)-(3.16) satisfies the hypotheses of Theorem A.3 with 

= (1 + f12)/I-1 + (2d -3 ) f l  2] with respect to any other BFACF algorithm. 

The next theorems concern "hybrid" algorithms of the form P = P ~ -  
( 1 - 2 ) P o + 2 P ~  (0~<2~<1), where P0 and P1 are transition matrices 
satisfying detailed balance for the same distribution 7z. 

T h e o r e m  A.4. m(P)~) is a concave function of 2. 

ProoL This is a well-known consequence of the Rayleigh-Ritz 
formula (A.6): the point is that if 21 ~< 22 ~< )~3, then any trial function f for 
P~.2 can also be used for P~, and P~3- | 

A much deeper theorem is the following: 

T h e o r e m  A.5. For each nonconstant f ~  12(7C), [~'int, f (P~.) + 1/2]-1 
is a concave function of 2. 
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The proof of Theorem A.5 is based on a beautiful identity and inequality 
for "parallel addition" of self-adjoint operators due to Anderson et a1.(69'7~ 

Proposit ion A.2. Let A and B be positive-definite self-adjoint 
operators on a HUbert space ~'~. Then 

(f, E A - I + B - ~ ]  t f ) =  inf [(g, Ag)+ (h, Bh)] (A.22) 
g + h - - f  

Sketch of Proof. The motivation behind this lemma is to think of A 
and B as multiport resistor networks and f as a set of input currents. Then 
(A.22) is a multiport generalization of the usual parallel-resistor formula: it 
says that the current divides between A and B so as to minimize the total 
power dissipation. In the finite-dimensional case, the proof is very simple 
(ref. 69, Lemma 18): Let go=(A+B) ~Bf Then, for any g, he~r with 
g + h = f, we have 

(g, Ag)+ (h, Bh)=(f, [A I + B-~] l f)+ (g_  go, (A + B)(g_ go)) 
(A.23) 

It follows that (A.22) holds, with equality when (and only when) g = go. 
The infinite-dimensional case is similar, but involves more technicalities, 
because the operators A -1 and B -~ might be unbounded (ref. 70, 
Theorems 8 and 9). | 

C o r o l l a r y  A.1. Let A and B be positive-definite self-adjoint 
operators on a Hilbert space ~ .  Then 

( f  [A-*+B-*]-if)<<.[(f, Af) ~+( f ,  Bf) -~] ~ (A.24) 

Proof. Set 

(f, Bf)  
g = (f, (A + B ) f )  f 

in Proposition A.2. (Among choices of the form g = ef, this is the optimal 
one.) | 

Proof of Theorem ll.5. We apply Corollary A.1 to the Hilbert space 
24e=1 • with A = ( 1 - - 2 ) - l ( I - - P o )  -1 and B=2-1(I-P~)  1. We conclude 
that 

( f , [ ( 1 - - 2 ) ( I - - P o ) + 2 ( I - - P ~ ) ]  if)-~ 

>~(1--2)( f , ( I - -Po)  *f)-~+2(f,(I--P~) *f) ~ (A.25) 



Nonlocal MC Algorithm for SAWs 4 7  

Translation this into the language of autocorrelation times, we get 

[rint, r(P~)+�89 '~(1-,,L)[%,t,r(Po)+ �89 ~+2[rmt , f (P , ) - I -+]  ' 

Theorem A.5 follows easily from this inequality. | 

One immediate consequence of Theorems A.4 and A.5 is that 

(A.26) 

m(P;) >~ min(2, l - 2 )  x 

[Tint,/. ( e ) . )  _~_ �89 1 ~ min(2, 1 - 2) x 

sup m(P~,) (A.27) 
0 ~ 2 ~ 1  

sup [ T i n t , y ( P a , ) +  �89 -1 (A.28) 
0 ~ 2 ~ 1  

In particular, the hybrid algorithm with 2 = 1/2 is never more than a factor 
of 2 worse than the algorithm with the "optimal" value of 2. 

Finally, we present two theorems that give lower bounds on the 
autocorrelation time based on a random-walk intuition. The general setup 
is the following: Suppose that the state space S can be decomposed as 
S =  U,,~o S, in such a way that Pxp = 0 whenever x ~ Si and y ~ Sj with 
] i - j ]  > 1. Then we can define an aggregated Markov chain F with state 
space Z+ = {0, 1, 2,...} and transition probabilities 

Zx~ sl, y~ sj nx Px~ 
(A.29) "0~ Zx~syx 

This is an irreducible reversible Markov chain on Z+ with invariant 
measure 

~i-- Y', ~x (A.30) 
x ~  Si 

Moreover, it can easily be shown (ref. 51, Section 4) that 

Vexp(P) --~ rexp(P) (A.31) 

Therefore, in order to prove lower bounds on {exp(P), it suffices to prove 
lower bounds on T'~p (i.e., upper bounds on the mass gap) for general 
random walks on Z+ .  The next theorem addresses this question: 

T h e o r e m  A.6. Let P =  {p,j} be the transition matrix for a Markov 
chain on Z+ with invariant probability measure re, and suppose that p~j = 0 
for j i - j l  > 1. 24 Fix 0~<r~< 1, and suppose that for all e > 0  and all k <  o% 
there exists M such that 

r - e ~ + l ~ <  [ 2 -  ( r -  e)1/2] 2 (A.32) 
TC n 

24 Such a Markov chain is automatically reversible, since the state space has no cycles except 
self-loops. 
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for n = M, M + 1 ..... M + k. Then 

inf essential s p e c ( I -  P) ~< 
( 1 -  ~ - )  2 

l + r  
(A.33) 

[In particular, this is an upper bound on m = i n f s p e c ( I -  P).]  

Remarks. 1. The hypothesis holds, in particular, if lim, ~ oo(n,+ j n , )  
= r. But it is of course much weaker. 

2. The bound is sharp for the random walk with constant inward 
drift on Z+ .  

Proof. Consider the trial function 

f ( n )  = nl~/2)~(M <~ n ~ N) (A.34) 

Then, by (1.21), we have 

(f, ( I -  P ) f )  
N--1 

7~ 1 =7~M-- lPM 1,M M-} -gNPN,  N+IT~N 1-[- E 7~nPn, n+l(TCn 1/2-'~n+1!~-1/212 
n=M 

= P M ' M - - l q - P N ' N + I + P M ' M + I  l\TrM+ l/ 

"t- PN, N 1 1 -  - -  
2nN 1/ A 

+ )~Pn,~+l nn 1/2 --1 2 
n=M+l LYre,+ 1/ 

E ( 7~n ~ 1/212; + ( 1 - - 2 ) p . , .  1 1 -  - -  (1.35) 
\7"Cn-- lJ A J 

for any 0 ~< 2 ~< 1. (Here we have repeatedly used the reversibility 
relation nipo=njpj i . )  Now, by hypothesis, there are disjoint intervals 
[M1, N1], [M2, N2] .... with l imj~oo(Nj -Mj )  = oo and r--~rCn+l/gn<~ 
[ 2 - ( r - e ) l / 2 ]  2 for M j - 1  <~n<~N:. It follows that 

1 1 (/'~n ~1/2 ~ 1 (A.36) 
\Fen+l /  (r--g) 1/2 

1 - - (  n, ~U2 ~< l -- (r -- e) 1/2 (1.37) 
k~Zn- 1/ I 
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for Mj<~n<~N s. So choose 2 = ( r - e ) / ( l + r - e ) .  We then get, using 
p~,~+~ + p~,n 1<~1, 

( 1 1)2 + ( N - M - - l )  [1 - ( r -  e)1/212 (A.38) 
( f  (I-- P ) f )  <~ 3 + (r - ,s 1 + r -- e 

On the other hand, 
N 

( f , f ) =  ~ ~ z ~ - ~ = N - M + I  (A.39) 
n = m  

Thus, taking j--* 
there is an infinite 
Rayleigh quotients 

(fj, (I-- P)f/) [ 1 -  (r_~s 
lira sup ~< 

j oo ( f j ,  f j )  l+r-  

By the min-max theorem, this proves that 

[1 -- (r-- ~)1/2] 2 
inf essential spec(I-- P) ~< 

l + r - - g  

and using l i m j ~ ( N ; - M s ) =  ~ ,  we conclude that 
orthogonal family {fs} of trial functions that have 

(A.40) 

(A.41) 

Since e was arbitrary, the theorem is proven. | 

Corollary A.2. Suppose that, in addition, 

nz~ n - (n - 1 ) r~ n _ 1 
sup - C <  ~ (A.42) 
n~>l Ten 

Then 

inf essential s p e c ( I -  P) <~ C 2 ( N ) -2 (A.43) 

where ( N } _  .=ore%. 

Remark. If ~ ~ r"n ~- l as 
rz.  1]/7z.=~; so, provided that 
irreducible), it follows that C < oo. 

N Proof. ( } = Z n = l n T z ~ , s o  

/7 ----r OO, 

all ~ , > 0  
then lim . . . .  [mrn-  ( n -  1) 
(i.e., the Markov chain is 

( 1 - r ) ( N } =  ~ [ n ~ . - ( n - 1 ) r 7  L, 1] 
n = l  

n = l  

~<C (A.44) 

822/60/1-2-4 
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Hence 
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inf essential spec(l-- P) (1-~7)2<~(1_r)2<~C2(N) 2 | 
l + r  

(This corollary and its proof are essentially Corollary 4.1 of ref. 51.) 
We can also prove a similar theorem for zi=t,f" 

T h e o r e m  A.7. Let P be a reversible Markov chain with invariant 
probability measure re, and let fe/2(re)  be an observable whose maximum 
change in a single step of the Markov chain is bounded by C < oo (i.e., 
i f (x )  - f (y) [  ~< C whenever p~y ~ 0). Then 

2 vary(f) 1 (A.45) 
"Cint'f ~ C 2 2 

Proof Using (A.21), we see immediately that 

C 2 
(f, ( I -  P) f )  <~-~- (A.46) 

On the other hand, 

z . ~ 2 ( f ( l - F I ) f )  v a r ~ ( f ) = ( f 2 )  _ f ) ~  (A.47) 

Therefore, 

(f, ( I - P ) f )  >_ C 2 
pff(1) = 1 (f, ~ ,.- 1 2 vary(f)  (A.48) 

which by (A.19) implies the claimed bound (A.45). | 

Examples. 1. In the BFACF algorithm with endpoint x, let f ( co)=  
sr co') be the minimum surface area spanned by the union of co and co', 
where co' is a fixed walk from 0 to x. (In the BFACF algorithm with d =  2 
and Ixl = 1, we could alternatively take f to be the signed area sJ or its 
absolute value Ld[.) Clearly d changes by at most one unit in a BFACF 
move, so Theorem A.7 implies that 

~int._~ >~ 2 va r . (N)  - 1/2 (A.49) 

m~d likewise for tall. Assuming that the full probability distribution of ~4 
scales like N 2v [as suggested by (2.13)], we conclude that 

'~'int,_~, '~int.[d[ ~ eonst x ( N )  4v (A.50) 
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2. In any variable-N algorithm for SAWs that makes bounded 
changes in N at each move (e.g., the hybrid BFACF/cut-and-paste 
algorithm, which has IANI ~<2), Theorem A.6 (and its corollary) and 
Theorem A.7 imply that 

rexp, "Cint. N/> const • ( N ) ;  (A.51) 

[assuming the usual scaling behavior (2.4) of the CN(X)]. 

3. In the f i x e d - N  local-deformation algorithms (see ref. 10 for 
references), we can use Theorem A.7 with f equal to the center of mass of 
the walk, 

1 N 
f ( c o ) =  ~ 2 coi (A.52) 

i=o 

Clearly f changes by at most order 1IN in a fixed-N local deformation, z5 
On the other hand, the usual scaling behavior indicates that v a r . ( f ) ~  N 2v. 
It follows from Theorem A.7 and (2.38) that 

rex p ~ Tint,f) const x N 2+2v (A.53) 

This lower bound is the rigorous version of the heuristic argument given in 
ref. 10. 
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